Previous |  Up |  Next

Article

Keywords:
partial metric; KM-fuzzy metric; KM-fuzzy partial metric; partial pseudo-metric system; fuzzy neighborhood system
Summary:
The main purpose of this paper is to give a new approach for partial metric spaces. We first provide the new concept of KM-fuzzy partial metric, as an extension of both the partial metric and KM-fuzzy metric. Then its relationship with the KM-fuzzy quasi-metric is established. In particularly, we construct a KM-fuzzy quasi-metric from a KM-fuzzy partial metric. Finally, after defining the notion of partial pseudo-metric systems, a one-to-one correspondence between partial pseudo-metric systems and KM-fuzzy partial pseudo-metrics is constructed. Furthermore, a fuzzifying topology $\tau_{P}$ on X deduced from KM-fuzzy partial metric is established and some properties of this fuzzifying topology are discussed.
References:
[1] Fréchet, M.: Sur quelques points du calcul fonctionel. Rend. Circ. Mat. Palermo 22 (1906), 1-72. DOI 
[2] George, A., Veeramani, P.: On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 395-399. DOI  | MR 1289545 | Zbl 0843.54014
[3] George, A., Veeramani, P.: Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 933-940. MR 1367026 | Zbl 0870.54007
[4] Han, S., Wu, J., Zhang, D.: Properties and principles on partial metric spaces. Topology Appl. 230 (2017), 77-98. DOI  | MR 3702755
[5] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000. MR 1790096 | Zbl 1087.20041
[6] Kramosil, I., Michálek, J.: Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 336-344. MR 0410633
[7] Matthews, S. G.: Partial metric topology. In: General Topology and its Applications. Proc. 8th summer Conference on general Topology and Applicationsh., Queen's College, Ann. New York Acad. Sci. 728 (1994), 183-197. DOI  | MR 1467773
[8] Menger, K.: Statistical Metrics. Proc. National Academy of Sciences of the United States of America 28 (1942), 535-537. MR 0007576
[9] O'Neill, S. J.: A Fundamental Study Into the Theory and Application of the Partial Metric Spaces. University of Warwick, Coventry 1998. MR 1429662
[10] Pang, B., Shi, F. G.: Characterizations of $(L, M)$-fuzzy pseudo-metrics by pointwise pseudo-metric chains. J. Intell. Fuzzy Systems 27 (2014), 2399-2407. DOI  | MR 3279795
[11] Romaguera, S., Schellekens, M.: Duality and quasi-normability for complexity spaces. Appl. Gen. Topol. 3 (2002), 91-112. DOI  | MR 1931256
[12] Romaguera, S., Sánchez-Pérez, E. A., Valero, O.: Quasi-normed monoids and quasi-metrics. Publ. Math. Debrecen 62 (2003), 53-69. DOI  | MR 1956801
[13] Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10 (1960), 314-334. MR 0115153 | Zbl 0136.39301
[14] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. MR 0790314 | Zbl 0546.60010
[15] Gregori, V., Miñana, J., Miravet, D.: Fuzzy partial metric spaces. Int. J. Gen. Syst. 48 (2019), 3, 260-279. DOI  | MR 3904572
[16] Shi, F. G.: Pointwise pseudo-metrics in $L$-fuzzy set theory. Fuzzy Sets and Systems 121 (2001), 209-216. DOI  | MR 1834506
[17] Shi, F. G.: $(L, M)$-fuzzy metric spaces. Indian J. of Math. 52 (2010), 231-250. MR 2681491
[18] Shi, Y., Shen, C., Shi, F. G.: $L$-partial metrics and their topologies. Int. J. Approx. Reason. 121 (2020), 125-134. DOI  | MR 4080017
[19] Wu, J., Yue, Y.: Formal balls in fuzzy partial metric space. Iran. J. Fuzzy Syst. 14 (2017), 2, 155-164. DOI  | MR 3676565
[20] Xu, L.: Characterizations of fuzzifying topologies by some limit structures. Fuzzy Sets Systems 123 (2001), 169-176. DOI  | MR 1849400
[21] Ying, M.: A new approach for fuzzy topology (I). Fuzzy Sets Systems 39 (1991), 303-321. DOI  | MR 1095905
[22] Yue, Y., Shi, F.: On fuzzy pseudo-metric spaces. Fuzzy Sets Systems 161 (2010), 1105-1106. DOI  | MR 2595257
[23] Yue, Y., Gu, M.: Fuzzy partial (pseudo-)metric spaces. J. Intell. Fuzzy Systems 27 (2014), 1153-1159. DOI  | MR 3259333
[24] Yue, Y.: Separated $\triangle^+$-valued equivalences as probabilistic partial metric spaces. J. Intell. Fuzzy Systems 28 (2015), 6, 2715-2724. DOI  | MR 3400861
Partner of
EuDML logo