[1] Fréchet, M.:
Sur quelques points du calcul fonctionel. Rend. Circ. Mat. Palermo 22 (1906), 1-72.
DOI
[2] George, A., Veeramani, P.:
On some results in fuzzy metric spaces. Fuzzy Sets Systems 64 (1994), 395-399.
DOI |
MR 1289545 |
Zbl 0843.54014
[3] George, A., Veeramani, P.:
Some theorems in fuzzy metric spaces. J. Fuzzy Math. 3 (1995), 933-940.
MR 1367026 |
Zbl 0870.54007
[4] Han, S., Wu, J., Zhang, D.:
Properties and principles on partial metric spaces. Topology Appl. 230 (2017), 77-98.
DOI |
MR 3702755
[5] Klement, E. P., Mesiar, R., Pap, E.:
Triangular Norms. Kluwer Academic Publishers, Dordrecht 2000.
MR 1790096 |
Zbl 1087.20041
[6] Kramosil, I., Michálek, J.:
Fuzzy metric and statistical metric spaces. Kybernetika 11 (1975), 336-344.
MR 0410633
[7] Matthews, S. G.:
Partial metric topology. In: General Topology and its Applications. Proc. 8th summer Conference on general Topology and Applicationsh., Queen's College, Ann. New York Acad. Sci. 728 (1994), 183-197.
DOI |
MR 1467773
[8] Menger, K.:
Statistical Metrics. Proc. National Academy of Sciences of the United States of America 28 (1942), 535-537.
MR 0007576
[9] O'Neill, S. J.:
A Fundamental Study Into the Theory and Application of the Partial Metric Spaces. University of Warwick, Coventry 1998.
MR 1429662
[10] Pang, B., Shi, F. G.:
Characterizations of $(L, M)$-fuzzy pseudo-metrics by pointwise pseudo-metric chains. J. Intell. Fuzzy Systems 27 (2014), 2399-2407.
DOI |
MR 3279795
[11] Romaguera, S., Schellekens, M.:
Duality and quasi-normability for complexity spaces. Appl. Gen. Topol. 3 (2002), 91-112.
DOI |
MR 1931256
[12] Romaguera, S., Sánchez-Pérez, E. A., Valero, O.:
Quasi-normed monoids and quasi-metrics. Publ. Math. Debrecen 62 (2003), 53-69.
DOI |
MR 1956801
[14] Schweizer, B., Sklar, A.:
Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983.
MR 0790314 |
Zbl 0546.60010
[15] Gregori, V., Miñana, J., Miravet, D.:
Fuzzy partial metric spaces. Int. J. Gen. Syst. 48 (2019), 3, 260-279.
DOI |
MR 3904572
[16] Shi, F. G.:
Pointwise pseudo-metrics in $L$-fuzzy set theory. Fuzzy Sets and Systems 121 (2001), 209-216.
DOI |
MR 1834506
[17] Shi, F. G.:
$(L, M)$-fuzzy metric spaces. Indian J. of Math. 52 (2010), 231-250.
MR 2681491
[18] Shi, Y., Shen, C., Shi, F. G.:
$L$-partial metrics and their topologies. Int. J. Approx. Reason. 121 (2020), 125-134.
DOI |
MR 4080017
[19] Wu, J., Yue, Y.:
Formal balls in fuzzy partial metric space. Iran. J. Fuzzy Syst. 14 (2017), 2, 155-164.
DOI |
MR 3676565
[20] Xu, L.:
Characterizations of fuzzifying topologies by some limit structures. Fuzzy Sets Systems 123 (2001), 169-176.
DOI |
MR 1849400
[21] Ying, M.:
A new approach for fuzzy topology (I). Fuzzy Sets Systems 39 (1991), 303-321.
DOI |
MR 1095905
[22] Yue, Y., Shi, F.:
On fuzzy pseudo-metric spaces. Fuzzy Sets Systems 161 (2010), 1105-1106.
DOI |
MR 2595257
[23] Yue, Y., Gu, M.:
Fuzzy partial (pseudo-)metric spaces. J. Intell. Fuzzy Systems 27 (2014), 1153-1159.
DOI |
MR 3259333
[24] Yue, Y.:
Separated $\triangle^+$-valued equivalences as probabilistic partial metric spaces. J. Intell. Fuzzy Systems 28 (2015), 6, 2715-2724.
DOI |
MR 3400861