[1] Hamed, B. Ben, Ellouze, I., Hammami, M. A.:
Practical uniform stability of nonlinear differential delay equations. Mediterranean J. Math. 8 (2011), 603-616.
DOI |
MR 2860688
[2] Abdallah, A. Ben, Ellouze, I., Hammami, M. A.:
Practical stability of nonlinear time-varying cascade systems. J. Dynamic. Control Systems 15 (2009), 45-62.
DOI |
MR 2475660
[4] Bainov, D., Simenov, P.:
Integral Inequalities and Applications. Springer, Kluwer Academic Publishers, Congress, Dordrecht 1992.
MR 1171448
[5] Berger, T.:
Bohl exponent for time-varying linear differential-algebraic equations. Int. J. Control 10 (2012), 1433-1451.
DOI |
MR 2972709
[6] Berger, T., Ilchmann, A.:
On the standard canonical form of time-varying linear DAEs. Quarterly Appl. Math. 71 (2013), 69-87.
DOI |
MR 3075536
[7] Berger, T., Ilchmann, A.:
On stability of time-varying linear differential-algebraic equations. Int. J. Control 86 (2013), 1060-1076.
DOI |
MR 3226905
[8] Campbell, L.:
Singular Systems of Differential Equations. Pitman Advanced Publishing Program, London 1980.
MR 0569589
[9] Campbell, S. L.:
Singular Systems of Differential Equations II. Pitman Advanced Publishing Program, London 1982.
MR 0665426
[10] Caraballo, T., Ezzine, F., Hammami, M. A.:
On the exponential stability of stochastic perturbed singular systems in mean square. Appl. Math. Optim. 84 (2021), 2923-2945.
DOI |
MR 4308217
[11] Caraballo, T., Ezzine, F., Hammami, M., Mchiri, L.:
Practical stability with respect to a part of variables of stochastic differential equations. Stochastics Int. J. Probab. Stoch. Process. 5 (2021), 647-664.
DOI |
MR 4270858
[12] Caraballo, T., Ezzine, F., Hammami, M.:
Partial stability analysis of stochastic differential equations with a general decay rate. J. Engrg. Math. 130 (2021), 1-17.
DOI |
MR 4308313
[13] Dai, L.:
Singular Control Systems. Springer-Verlag, Berlin 1989.
MR 0986970
[14] Debeljkovic, D. Lj., Jovanovic, B., Drakulic, V.: Singular system theory in chemical engineering theory: Stability in the sense of Lyapunov: A survey. Hemijska Industrija 6(2001), 260-272.
[15] Dragomir, S. S.:
Some Gronwall Type Inequalities and Applications. Nova Science Publishers, Hauppauge 2003.
MR 2016992
[16] Gronwall, T. H.:
Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann. Math. 20 (1919), 293-296.
DOI |
MR 1502565
[17] Kunkel, P., Mehrmann, V.:
Differential-Algebraic Equations Analysis and Numerical Solution. EMS Publishing House, Zurich 2006.
MR 2225970
[19] Luenberger, D. G.:
Time-invariant descriptor systems. Automatica 14 (1978), 473-480.
DOI
[20] Ownes, D. H., Debeljkovic, D. Lj.:
Consistency and Liapunov stability of linear descriptor systems: A geometric analysis. IMA J. Math. Control Inform. 2 (1985), 139-151.
DOI
[21] Pham, Q. C., Tabareau, N., Slotine, J. E.:
A contraction theory approach to stochastic Incremental stability. IEEE Trans. Automat. Control 54 (2009), 1285-1290.
DOI |
MR 2514815
[22] Rosenbrock, H. H.:
Structure properties of linear dynamical systems. Int. J. Control 20 (1974), 191-202.
DOI |
MR 0424303
[24] Vrabel, R.:
Local null controllability of the control-affine nonlinear systems with time-varying disturbances, Direct calculation of the null controllable region. Europ. J. Control 40 (2018), 80-86.
DOI |
MR 3767584