Previous |  Up |  Next

Article

Keywords:
generalized quadratic operator; perturbation classes problem
Summary:
We provide a complete description of the perturbation class and the commuting perturbation class of all generalized quadratic bounded operators with respect to a given idempotent bounded operator in the context of complex Banach spaces. Furthermore, we give simple characterizations of the generalized quadraticity of linear combinations of two generalized quadratic bounded operators with respect to a given idempotent bounded operator.
References:
[1] Aiena, P., González, M.: Intrinsic characterizations of perturbation classes on some Banach spaces. Arch. Math. 94 (2010), 373-381. DOI 10.1007/s00013-010-0103-7 | MR 2643971 | Zbl 1187.47014
[2] Aleksiejczyk, M., Smoktunowicz, A.: On properties of quadratic matrices. Math. Pannonica 11 (2000), 239-248. MR 1791000 | Zbl 0994.15012
[3] Deng, C. Y.: On properties of generalized quadratic operators. Linear Algebra Appl. 432 (2010), 847-856. DOI 10.1016/j.laa.2009.09.024 | MR 2577632 | Zbl 1185.47001
[4] Farebrother, R. W., Trenkler, G.: On generalized quadratic matrices. Linear Algebra Appl. 410 (2005), 244-253. DOI 10.1016/j.laa.2005.08.018 | MR 2177842 | Zbl 1086.15504
[5] González, M.: The perturbation classes problem in Fredholm theory. J. Funct. Anal. 200 (2003), 65-70. DOI 10.1016/S0022-1236(02)00071-X | MR 1974088 | Zbl 1036.47007
[6] González, M., Martínez-Abejón, A., Pello, J.: A survey on the perturbation classes problem for semi-Fredholm and Fredholm operators. Funct. Anal. Approx. Comput. 7 (2015), 75-87. MR 3313269 | Zbl 1353.47019
[7] Lebow, A., Schechter, M.: Semigroups of operators and measures of noncompactness. J. Funct. Anal. 7 (1971), 1-26. DOI 10.1016/0022-1236(71)90041-3 | MR 0273422 | Zbl 0209.45002
[8] Oudghiri, M., Souilah, K.: Linear preservers of quadratic operators. Mediterr. J. Math. 13 (2016), 4929-4938. DOI 10.1007/s00009-016-0783-8 | MR 3564542 | Zbl 1362.47027
[9] Oudghiri, M., Souilah, K.: The perturbation class of algebraic operators and applications. Ann. Funct. Anal. 9 (2018), 426-434. DOI 10.1215/20088752-2017-0057 | MR 3835229 | Zbl 06946366
[10] Petik, T., Uç, M., Özdemir, H.: Generalized quadraticity of linear combination of two generalized quadratic matrices. Linear Multilinear Algebra 63 (2015), 2430-2439. DOI 10.1080/03081087.2015.1016886 | MR 3402548 | Zbl 1330.15048
[11] Uç, M., Özdemir, H., Özban, A. Y.: On the quadraticity of linear combinations of quadratic matrices. Linear Multilinear Algebra 63 (2015), 1125-1137. DOI 10.1080/03081087.2014.922967 | MR 3291960 | Zbl 1310.15049
[12] Uç, M., Petik, T., Özdemir, H.: The generalized quadraticity of linear combinations of two commuting quadratic matrices. Linear Multilinear Algebra 64 (2016), 1696-1715. DOI 10.1080/03081087.2015.1114985 | MR 3509494 | Zbl 1346.15017
[13] Živković-Zlatanović, S. Č., Djordjević, D. S., Harte, R.: Ruston, Riesz and perturbation classes. J. Math. Anal. Appl. 389 (2012), 871-886. DOI 10.1016/j.jmaa.2011.12.030 | MR 2879265 | Zbl 1253.47029
Partner of
EuDML logo