[1] Burris, S., Sankappanavar, H.P.: A course in universal algebra. Graduate Texts in Mathematics. vol. 78, Springer-Verlag, New York-Berlin, 1981, 2012 update of the Millennium Edition, xvi+276 pp. ISBN: 0-387-90578-2.
[6] Czédli, G., Grätzer, G.: A new property of congruence lattices of slim planar semimodular lattices. to appear in Categ. Gen. Algebr. Struct. Appl.
[7] Czédli, G., Grätzer, G.:
Planar semimodular lattices: structure and diagrams. Lattice Theory: special topics and applications, vol. 1, Birkhäuser-Springer, Cham, 2014, pp. 91–130.
MR 3330596
[10] Davey, B.A., Priestley, H.A.:
Introduction to lattices and order. 2nd ed., Cambridge University Press, New York, 2002, xii+298 pp.
MR 1902334
[12] Ehrenfeucht, A.:
An application of games to the completeness problem for formalized theories. Fund. Math. 49 (1961), 129–141.
DOI 10.4064/fm-49-2-129-141
[14] Fraïssé, R.: Sur quelques classifications des systèmes de relations. Publications Scientifiques de l'Université d'Alger, Series A 1 (1954), 35–182.
[16] Grätzer, G.:
General lattice theory. Birkhäuser Verlag, Basel, 2003, xx+663 pp.
MR 2451139
[19] Grätzer, G., Knapp, E.:
Notes on planar semimodular lattices. I. Construction. Acta Sci. Math. (Szeged) 73 (2007), 445–462.
MR 2380059
[20] Grätzer, G., Knapp, E.:
Notes on planar semimodular lattices. III. Congruences of rectangular lattice. Acta Sci. Math. (Szeged) 75 (2009), 29–48.
MR 2533398
[23] Immerman, N.: Descriptive Complexity. Springer, New York, 1999.
[24] Keisler, H.J.:
Ultraproducts of finite sets. J. Symbolic Logic 32 (1967), 47–57.
DOI 10.2307/2271241
[25] Kurosh, A.G.: The theory of groups. Volume 1. 2nd english ed., Chelsea Publishing Co., New York, 1960, 272 pp.
[26] Libkin, L.:
Elements of finite model theory. Springer-Verlag, Berlin, 2004, xiv+315 pp.
MR 2102513
[27] Poizat, B.: A course in model theory. An introduction to contemporary mathematical logic. Springer-Verlag, New York, 2000, xxxii+443 pp.