[1] Albiac F., Kalton N. J.:
Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, 2006.
MR 2192298 |
Zbl 1094.46002
[3] Castillo J. M. F., Sanchez F.:
Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59.
MR 1245024
[4] Castillo J. M. F., Sánchez F.:
Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces. J. Math. Anal. Appl. 185 (1994), no. 2, 256–261.
DOI 10.1006/jmaa.1994.1246 |
MR 1283055
[5] Defant A., Floret K.:
Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993.
MR 1209438
[7] Dehghani M. B., Moshtaghioun S. M., Dehghani M.:
On the limited $p$-Schur property of some operator spaces. Int. J. Anal. Appl. 16 (2018), no. 1, 50–61.
MR 3758748
[8] Dehghani M., Dehghani M. B., Moshtaghioun M. S.:
Sequentially right Banach spaces of order $p$. Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67.
MR 4093429
[10] Diestel J., Jarchow H., Tonge A.:
Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995.
MR 1342297
[12] Emmanuele G.:
A dual characterization of Banach spaces not containing $\ell_1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160.
MR 0861172
[15] Ghenciu I., Lewis P.:
The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324.
DOI 10.4064/cm106-2-11 |
MR 2283818
[18] Li L., Chen D., Chávez-Domínguez J. A.:
Pelczyński's property ($V^*$) of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442.
DOI 10.1002/mana.201600335 |
MR 3767145
[20] Pelczyński A.:
Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648.
MR 0149295
[21] Ruess W.:
Duality and geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78.
DOI 10.1016/S0304-0208(08)71467-1 |
MR 0761373 |
Zbl 0573.46007
[22] Ryan R. A.:
Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002.
MR 1888309 |
Zbl 1090.46001
[23] Salimi M., Moshtaghioun S. M.:
The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92.
DOI 10.15352/bjma/1313363004 |
MR 2792501
[24] Schlumprecht T.:
Limited sets in injective tensor products. Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158.
MR 1126743