Previous |  Up |  Next

Article

Keywords:
Gelfand--Phillips property; Schur property; $p$-Schur property; weakly $p$-compact set; reciprocal Dunford--Pettis property of order $p$
Summary:
By using the concepts of limited $p$-converging operators between two Banach spaces $X$ and $Y$, $L_p$-sets and $L_p$-limited sets in Banach spaces, we obtain some characterizations of these concepts relative to some well-known geometric properties of Banach spaces, such as $*$-Dunford--Pettis property of order $p$ and Pelczyński's property of order $p$, $1\leq p<\infty$.
References:
[1] Albiac F., Kalton N. J.: Topics in Banach Space Theory. Graduate Texts in Mathematics, 233, Springer, New York, 2006. MR 2192298 | Zbl 1094.46002
[2] Bourgain J., Diestel J.: Limited operators and strict cosingularity. Math. Nachr. 119 (1984), 55–58. DOI 10.1002/mana.19841190105 | MR 0774176 | Zbl 0601.47019
[3] Castillo J. M. F., Sanchez F.: Dunford–Pettis-like properties of continuous vector function spaces. Rev. Mat. Univ. Complut. Madrid 6 (1993), no. 1, 43–59. MR 1245024
[4] Castillo J. M. F., Sánchez F.: Weakly $p$-compact, $p$-Banach–Saks and super-reflexive Banach spaces. J. Math. Anal. Appl. 185 (1994), no. 2, 256–261. DOI 10.1006/jmaa.1994.1246 | MR 1283055
[5] Defant A., Floret K.: Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, 176, North-Holland Publishing, Amsterdam, 1993. MR 1209438
[6] Dehghani M. B., Moshtaghioun S. M.: On the $p$-Schur property of Banach spaces. Ann. Funct. Anal. 9 (2018), no. 1, 123–136. DOI 10.1215/20088752-2017-0033 | MR 3758748
[7] Dehghani M. B., Moshtaghioun S. M., Dehghani M.: On the limited $p$-Schur property of some operator spaces. Int. J. Anal. Appl. 16 (2018), no. 1, 50–61. MR 3758748
[8] Dehghani M., Dehghani M. B., Moshtaghioun M. S.: Sequentially right Banach spaces of order $p$. Comment. Math. Univ. Carolin. 61 (2020), no. 1, 51–67. MR 4093429
[9] Delgado J. M., Piñeiro C.: A note on $p$-limited sets. J. Math. Anal. Appl. 410 (2014), no. 2, 713–718. DOI 10.1016/j.jmaa.2013.08.045 | MR 3111861
[10] Diestel J., Jarchow H., Tonge A.: Absolutely summing operators. Cambridge Studies in Advanced Mathematics, 43, Cambridge University Press, Cambridge, 1995. MR 1342297
[11] Drewnowski L.: On Banach spaces with the Gelfand–Phillips property. Math. Z. 193 (1986), no. 3, 405–411. DOI 10.1007/BF01229808 | MR 0862887
[12] Emmanuele G.: A dual characterization of Banach spaces not containing $\ell_1$. Bull. Polish Acad. Sci. Math. 34 (1986), no. 3–4, 155–160. MR 0861172
[13] Fourie J. H., Zeekoei E. D.: $ DP^*$ properties of order $p$ on Banach spaces. Quaest. Math. 37 (2014), no. 3, 349–358. DOI 10.2989/16073606.2013.779611 | MR 3285289
[14] Fourie J. H., Zeekoei E. D.: On weak-star $p$-convergent operators. Quaest. Math. 40 (2017), no. 5, 563–579. DOI 10.2989/16073606.2017.1301591 | MR 3691468
[15] Ghenciu I., Lewis P.: The Dunford–Pettis property, the Gelfand–Phillips property, and $L$-sets. Colloq. Math. 106 (2006), no. 2, 311–324. DOI 10.4064/cm106-2-11 | MR 2283818
[16] Grothendieck A.: Sur les applications linéaires faiblement compactes d'espaces du type $C(K)$. Canad. J. Math. 5 (1953), 129–173 (French). DOI 10.4153/CJM-1953-017-4 | MR 0058866 | Zbl 0050.10902
[17] Karn A. K., Sinha D. P.: An operator summability of sequences in Banach spaces. Glasg. Math. J. 56 (2014), no. 2, 427–437. DOI 10.1017/S0017089513000360 | MR 3187909
[18] Li L., Chen D., Chávez-Domínguez J. A.: Pelczyński's property ($V^*$) of order $p$ and its quantification. Math. Nachr. 291 (2018), no. 2–3, 420–442. DOI 10.1002/mana.201600335 | MR 3767145
[19] Moshtaghioun S. M., Zafarani J.: Completely continuous subspaces of operator ideals. Taiwanese J. Math. 10 (2006), no. 3, 691–698. DOI 10.11650/twjm/1500403855 | MR 2206322
[20] Pelczyński A.: Banach spaces on which every unconditionally converging operator is weakly compact. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 641–648. MR 0149295
[21] Ruess W.: Duality and geometry of spaces of compact operators. Functional Analysis: Surveys and Recent Results III, Paderborn, 1983, North-Holland Math. Stud., 90, Notas Mat., 94, North-Holland, Amsterdam, 1984, pages 59–78. DOI 10.1016/S0304-0208(08)71467-1 | MR 0761373 | Zbl 0573.46007
[22] Ryan R. A.: Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer, London, 2002. MR 1888309 | Zbl 1090.46001
[23] Salimi M., Moshtaghioun S. M.: The Gelfand–Phillips property in closed subspaces of some operator spaces. Banach J. Math. Anal. 5 (2011), no. 2, 84–92. DOI 10.15352/bjma/1313363004 | MR 2792501
[24] Schlumprecht T.: Limited sets in injective tensor products. Functional Analysis, Austin, 1987/1989, Lecture Notes in Math., 1470, Longhorn Notes, Springer, Berlin, 1991, pages 133–158. MR 1126743
Partner of
EuDML logo