[3] Ammari, K., Vodev, G.:
Boundary stabilization of the transmission problem for the Bernoulli-Euler plate equation. Cubo 11 (2009), 39-49.
MR 2568250 |
Zbl 1184.35045
[6] Avalos, G., Triggiani, R.:
Uniform stabilization of a coupled PDE system arising in fluid-structure interaction with boundary dissipation at the interface. Discrete Contin. Dyn. Syst. 22 (2008), 817-833.
DOI 10.3934/dcds.2008.22.817 |
MR 2434971 |
Zbl 1158.35320
[9] Barbu, V., Grujić, Z., Lasiecka, I., Tuffaha, A.:
Existence of the energy-level weak solutions for a nonlinear fluid-structure interaction model. Fluids and Waves: Recent Trends in Applied Analysis Contemporary Mathematics 440. American Mathematical Society, Providence (2007), 55-82.
DOI 10.1090/conm/440 |
MR 2359449 |
Zbl 1297.35234
[10] Bastos, W. D., Raposo, C. A.:
Transmission problem for waves with frictional damping. Electron. J. Differ. Equ. 2007 (2007), Article ID 60, 10 pages.
MR 2299614 |
Zbl 1136.35315
[12] Bellassoued, M.:
Carleman estimates and distribution of resonances for the transparent obstacle and application to the stabilization. Asymptotic. Anal. 35 (2003), 257-279.
MR 2011790 |
Zbl 1137.35388
[13] Burq, N.:
Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel. Acta Math. 180 (1998), 1-29 French.
DOI 10.1007/BF02392877 |
MR 1618254 |
Zbl 0918.35081
[15] Chai, S., Liu, K.:
Boundary stabilization of the transmission of wave equations with variable coefficients. Chin. Ann. Math., Ser. A 26 (2005), 605-612 Chinese.
MR 2186628 |
Zbl 1090.35010
[18] Duyckaerts, T.:
Optimal decay rates of the energy of an hyperbolic-parabolic system coupled by an interface. Asymptotic. Anal. 51 (2007), 17-45.
MR 2294103 |
Zbl 1227.35062
[21] Hassine, F.:
Asymptotic behavior of the transmission Euler-Bernoulli plate and wave equation with a localized Kelvin-Voigt damping. Discrete Contin. Dyn. Syst., Ser. B 21 (2016), 1757-1774.
DOI 10.3934/dcdsb.2016021 |
MR 3543607 |
Zbl 1350.35031
[28] Rousseau, J. Le, Lebeau, G.:
Introduction aux inégalités de Carleman pour les opérateurs elliptiques et paraboliques: Applications au prolongement unique et au contrôle des équations paraboliques. Available at
https://hal.archives-ouvertes.fr/hal-00351736v2 (2009), 27 pages French.
[29] Rousseau, J. Le, Robbiano, L.:
Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Ration. Mech. Anal. 195 (2010), 953-990.
DOI 10.1007/s00205-009-0242-9 |
MR 2591978 |
Zbl 1202.35336
[34] Ramos, A. J. A., Souza, M. W. P.:
Equivalence between observability at the boundary and stabilization for transmission problem of the wave equation. Z. Angew. Math. Phys. 68 (2017), Article ID 48, 11 pages.
DOI 10.1007/s00033-017-0791-y |
MR 3626611 |
Zbl 1373.35191