[1] Barton, H. A., Chiu, W. A., Setzer, R. W., Andersen, M. E., Bailer, A. J., Bois, F. Y., DeWoskin, R. S., Hays, S., Johanson, G., Jones, N., Loizou, G., MacPhail, R. C., Portier, C. J., Spendiff, M., Tan, Y.-M.:
Characterizing uncertainty and variability in physiologically based pharmacokinetic models: State of the science and needs for research and implementation. Toxicolog. Sci. 99 (2007), 2, 395-402.
DOI 10.1093/toxsci/kfm100
[2] Bois, F. Y.:
Applications of population approaches in toxicology. Toxicology Letters 120 (2001), 1-3, 385-394.
DOI
[3] Cintrón-Arias, A., Banks, H. T., Capaldi, A., Lloyd, A. L.:
A sensitivity matrix based methodology for inverse problem formulation. J. Inverse and Ill-posed Problems 17 (2009), 6.
DOI 10.1515/JIIP.2009.034 |
MR 2547126
[4] Clewell, H., Andersen, M.:
Risk assessment extrapolations and physiological modeling. Toxicology and Industr. Health 1 (1985), 111-–131.
DOI 10.1177/074823378500100408
[5] Clewell, H. J., Gentry, P. R., Covington, T. R., Sarangapani, R., Teeguarden, J. G.:
Evaluation of the potential impact of age- and gender-specific pharmacokinetic differences on tissue dosimetry. Toxicolog. Sci. 79 (2004), 2, :381-393.
DOI
[6] Clewell, R., Andersen, M., Barton, H.:
A consistent approach for the application of pharmacokinetic modeling in cancer and noncancer risk assessment. Environmental Health Perspectives 110 (2002), 85–-93.
DOI
[7] Tebbens, J. Duintjer, Matonoha, C., Matthios, A., Papáček, Š.:
On parameter estimation in an in vitro compartmental model for drug-induced enzyme production in pharmacotherapy. Appl. Math. 64 (2019), 2, 253-277.
DOI 10.21136/AM.2019.0284-18 |
MR 3936970
[8] Galetin, A., Burt, H., Gibbons, L., Houston, J. B.:
Prediction of time-dependent CYP3A4 drug-drug interactions: impact of enzyme degradation, parallel elimination pathways, and intestinal inhibition. Drug Metabolism and Disposition 34 (2005), 1, 166-175.
DOI
[9] Michal, D. S. Gerhard: Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology. Second edition. Wiley, 2012.
[10] Gerlowski, L. E., Jain, R. K.:
Physiologically based pharmacokinetic modeling: Principles and applications. J. Pharmaceut. Sci. 72 (1983), 10, 1103-1127.
DOI
[11] Huang, J.:
Nonlinear output regulation: theory and applications. Advances in design and control. Society for Industrial and Applied Mathematics, Philadelphia, 2004.
MR 2308004
[12] Jia, G., Stephanopoulos, G., Gunawan, R.:
Incremental parameter estimation of kinetic metabolic network models. BMC Systems Biology 6 (2012), 142, 1799–-1819.
DOI
[13] Krishnan, K.: Characterization and Application of Physiologically Based Pharmacokinetic Models in Risk Assessment. Technical Report, World Health Organization, 2010.
[14] Luke, N. S., DeVito, M. J., Shah, I., El-Masri, H. A.:
Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull. Math. Biol. 72 (2010), 7, 1799–-1819.
DOI 10.1007/s11538-010-9508-5 |
MR 2728006
[15] MATLAB: Simulink Toolbox. Simulation and Model-Based Design. The MathWorks Inc., Natick 2020.
[16] Papáček, Š., Čelikovský, S., Rehák, B., Štys, D.:
Experimental design for parameter estimation of two time-scale model of photosynthesis and photoinhibition in microalgae. Math. Computers Simul. 80 (2010), 6, 1302-1309.
DOI |
MR 2610091
[17] Papáček, Š., Lynnyk, V., Rehák, B.: Regulatory network of drug-induced enzyme production: parameter estimation based on the periodic dosing response measurement. In: Programs and Algorithms of Numerical Mathematics 20, Institute of Mathematics, Czech Academy of Sciences, 2021.
[18] Rehák, B.:
Alternative method of solution of the regulator equation: L2-space approach. Asian J. Control 14 (2011), 4, 1150-1154.
DOI |
MR 2955458
[19] Rehák, B., Čelikovský, S.:
Numerical method for the solution of the regulator equation with application to nonlinear tracking. Automatica 44 (2008), 5, 1358-1365.
DOI |
MR 2531803
[20] Rehák, B., Čelikovský, S., Papáček, Š.:
Model for photosynthesis and photoinhibition: Parameter identification based on the harmonic irradiation $O_{2}$ response measurement. IEEE Trans. Automat. Control 53 (Special Issue) (2008), 101-108.
DOI |
MR 2605133
[21] Rehák, B., Čelikovský, S., Ruiz-León, J., Orozco-Mora, J.:
A comparison of two FEM-based methods for the solution of the nonlinear output regulation problem. Kybernetika 45 (2009), 427-444.
MR 2543132
[22] Rostami-Hodjegan, A., Tucker, G.:
‘In silico’ simulations to assess the ‘in vivo’ consequences of ‘in vitro’ metabolic drug-drug interactions. Drug Discovery Today: Technologies 1 (2004), 4, 441-448.
DOI
[23] Rowland, M., Peck, C., Tucker, G.:
Physiologically-based pharmacokinetics in drug development and regulatory science. Ann. Rev. Pharmacology and Toxicology 51 (2011), 1, 45-73.
DOI
[24] Sakamoto, N., Rehák, B.: Iterative methods to compute center and center-stable manifolds with application to the optimal output regulation problem. In: IEEE Conference on Decision and Control and European Control Conference, 2011.
[25] Svecova, L., Vrzal, R., Burysek, L., Anzenbacherova, E., Cerveny, L., Grim, J., Trejtnar, F., Kunes, J., Pour, M., Staud, F., Anzenbacher, P., Dvorak, Z., Pavek, P.:
Azole antimycotics differentially affect rifampicin-induced pregnane X receptor-mediated CYP3A4 gene expression. Drug Metabolism and Disposition 36 (2007), 2, 339-348.
DOI
[26] Zhao, P., Rowland, M., Huang, S.-M.:
Best practice in the use of physiologically based pharmacokinetic modeling and simulation to address clinical pharmacology regulatory questions. Clinical Pharmacology and Therapeutics 92 (2012), 17-–20.
DOI