[1] Bui, T.A.:
$W^{1,p(\cdot )}$ estimate for renormalized solutions of quasilinear equations with measure data and Reifenberg domains. Advances in Nonlinear Analysis, 7, 4, 2018, 517-533, Walter de Gruyter Gmbh Genthiner Strasse 13, D-10785 Berlin, Germany,
DOI 10.1515/anona-2016-0095 |
MR 3871419
[2] Cencelj, M., Rădulescu, V.D., Repovš, D.D.:
Double phase problems with variable growth. Nonlinear Analysis, 177, 2018, 270-287, Elsevier,
DOI 10.1016/j.na.2018.03.016 |
MR 3865198
[3] Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.:
Lebesgue and Sobolev spaces with variable exponents. 2011, Lecture Notes in Mathematics, Springer,
MR 2790542
[4] Edmunds, D., Rákosník, J.:
Sobolev embeddings with variable exponent. Studia Mathematica, 143, 3, 2000, 267-293,
DOI 10.4064/sm-143-3-267-293
[5] Khalil, A. El, Alaoui, M.D. Morchid, Touzani, A.: On the Spectrum of problems involving both $p ( x ) $-Laplacian and $P ( x ) $-Biharmonic. Advances in Science, Technology and Engineering Systems Journal, 2, 5, 2017, 134-140,
[6] Fan, X., Han, X.:
Existence and multiplicity of solutions for $p(x)$-Laplacian equations in Dirichlet problem in $\mathbb {R}^{N}$. Nonlinear Analysis: Theory, Methods & Applications, 59, 1--2, 2004, 173-188, Elsevier,
MR 1954585
[9] Fan, X.L., Zhang, Q.H.:
Existence of solutions for $p (x)$-Laplacian Dirichlet problem. Nonlinear Analysis: Theory, Methods & Applications, 52, 8, 2003, 1843-1852, Elsevier,
MR 1954585
[10] Kefi, K., Rădulescu, V.D.:
On a $p(x)$-biharmonic problem with singular weights. Zeitschrift für angewandte Mathematik und Physik, 68, 80, 2017, 1-13, Springer,
MR 3667256
[11] Scapellato, A.:
Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Boundary Value Problems, 2019, 1, 2019, 1-9, SpringerOpen,
MR 3895830
[12] Mihăilescu, M., Rădulescu, V.:
A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 462, 2073, 2006, 2625-2641, The Royal Society London,
DOI 10.1098/rspa.2005.1633 |
MR 2253555
[13] Rădulescu, V.D.:
Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Analysis: Theory, Methods & Applications, 121, 2015, 336-369, Elsevier,
DOI 10.1016/j.na.2014.11.007 |
MR 3348928
[14] Rădulescu, V.D.:
Isotropic and anisotropic double-phase problems: old and new. Opuscula Mathematica, 39, 2, 2019, 259-279, AGH University of Science and Technology Press,
MR 3897817
[15] Rădulescu, V.D., Repovš, D.D.:
Partial differential equations with variable exponents: variational methods and qualitative analysis. 9, 2015, Monographs and Research Notes in Mathematics, CRC press,
MR 3379920
[16] Růžička, M.: Electrorheological fluids: modeling and mathematical theory. 2000, Lecture Notes in Mathematics, 1748, Springer Science & Business Media,
[17] Szulkin, A.: Ljusternik-Schnirelmann theory on $C^1$-manifolds. Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 5, 2, 1988, 119-139, Elsevier,
[18] Zang, A., Fu, Y.:
Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Analysis: Theory, Methods & Applications, 69, 10, 2008, 3629-3636, Elsevier,
DOI 10.1016/j.na.2007.10.001 |
MR 2450565 |
Zbl 1153.26312
[19] Zeidler, E.: Nonlinear Functional Analysis and Its Applications: II/B: Nonlinear Monotone Operators. 1990, Springer, Translated from the German by the author and Leo F. Boron.
[20] Zhang, Q., Rădulescu, V.D.:
Double phase anisotropic variational problems and combined effects of reaction and absorption terms. Journal de Mathématiques Pures et Appliquées, 118, 2018, 159-203, Elsevier,
DOI 10.1016/j.matpur.2018.06.015 |
MR 3852472
[21] Zhikov, V.V.: Averaging of functionals of the calculus of variations and elasticity theory (in Russian). Izv. Akad. Nauk SSSR Ser. Mat., 50, 4, 1986, 675-710,