Previous |  Up |  Next

Article

Keywords:
linear neutral differential equation; exponential stability; time-varying systems
Summary:
We present new explicit criteria for exponential stability of general linear neutral time-varying differential systems. Particularly, our results give extensions of the well-known stability criteria reported in [3,11] to linear neutral time-varying differential systems with distributed delays.
References:
[1] Agarwal, R. P., Grace, S. R.: Asymptotic stability of certain neutral differential equations. Math.Computer Modell. 31 (2000), 9-15. DOI 
[2] Alexandrova, I. V., Zhabko, A. P.: Stability of neutral type delay systems: A joint Lyapunov-Krasovskii and Razumikhin approach. Automatica 106 (2019), 83-90. DOI 
[3] Bellen, A., Guglielmi, N., Ruehli, A. E.: Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Systems I Fundamental Theory Appl. 46 (1999), 212-215. DOI 
[4] Duda, J: A Lyapunov functional for a neutral system with a time-varying delay. Bull. Polish Acad. Sci.: Techn. Sci. 61 (2013), 911-918.
[5] Desoer, CA., Vidyasagar, M.: Feedback Synthesis: Input-Output Properties. SIAM, Philadelphia 2009.
[6] Fridman, E.: New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems. Systems Control Lett. 43 (2001), 309-319. DOI  | Zbl 0974.93028
[7] Gil, M.: Stability of Neutral Functional Differential Equations. Atlantis Press, Amsterdam, Paris, Bejing 2014.
[8] Hale, J., Lunel, S.: Introduction to Functional Differential Equations. Springer-Verlag, Berlin 1993. Zbl 0787.34002
[9] Hu, G. D., Hu, G. D.: Simple criteria for stability of neutral systems with multiple delays. Int. J. Systems Science 28 (1997), 1325-1328. DOI 
[10] Kolmanovskii, V., Mishkis, A.: Introduction to the Theory and Applications of Functional Differential Equations: Mathematics and its Applications. Kluwer Academic Publisher, Dordreht 1999.
[11] Li, L.: Stability of linear neutral delay-differential systems. Bull. Austral. Math. Soc. 38 (1988), 339-344. DOI 
[12] Li, Z., Lam, J., Wang, Y.: Stability analysis of linear stochastic neutral-type time-delay systems with two delays. Automatica 91 (2018), 179-189. DOI 
[13] Ngoc, P. H. A., Trinh, H.: Novel criteria for exponential stability of linear neutral time-varying differential systems. IEEE Trans. Automat. Control 61 (2016), 1590-1594. DOI 
[14] Verriest, E., Niculescu, S.: Delay-independent stability of linear neutral systems: A Riccati equation approach. In: Stability and Control of Time-Delay Systems (L. Dugard and E. I. Verriest, eds.), Springer-Verlag, London 1998, pp. 92-100.
[15] Zhao, N., Zhang, X., Xue, Y., Shi, P.: Necessary conditions for exponential stability of linear neutral type systems with multiple time delays. J. Franklin Inst. 355 (2018), 458-473. DOI 
Partner of
EuDML logo