Title:
|
Delay-dependent stability of high-order neutral systems (English) |
Author:
|
Zhao, Yanbin |
Author:
|
Hu, Guang-Da |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
57 |
Issue:
|
5 |
Year:
|
2021 |
Pages:
|
737-749 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this note, we are concerned with delay-dependent stability of high-order delay systems of neutral type. A bound of unstable eigenvalues of the systems is derived by the spectral radius of a nonnegative matrix. The nonnegative matrix is related to the coefficient matrices. A stability criterion is presented which is a necessary and sufficient condition for the delay-dependent stability of the systems. Based on the criterion, a numerical algorithm is provided which avoids the computation of the coefficients of the characteristic function. Under some conditions, the presented results are less conservative than those reported. A numerical example is given to illustrate the main results. (English) |
Keyword:
|
delay-dependent stability |
Keyword:
|
high-order neutral delay systems |
Keyword:
|
bound of unstable eigenvalues |
Keyword:
|
argument principle |
Keyword:
|
nonnegative matrix |
MSC:
|
15A18 |
MSC:
|
34K06 |
MSC:
|
34K20 |
idZBL:
|
Zbl 07478637 |
idMR:
|
MR4363234 |
DOI:
|
10.14736/kyb-2021-5-0737 |
. |
Date available:
|
2022-01-05T07:52:09Z |
Last updated:
|
2022-02-24 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/149300 |
. |
Reference:
|
[1] Ding, K., Zhu, Q.: Extended dissipative anti-disturbance control for delayed switched singular semi-Markovian jump systems with multi-disturbance via disturbance observer..Automatica 128 (2021), 109556. |
Reference:
|
[2] Franklin, G. F., Powell, J. D., Emami-Naeini, A.: Feedback Control of Dynamic Systems..Addison-Weslay Publishing Company, New York 1994. |
Reference:
|
[3] Hale, J. K., Lunel, S. M. Verduyn: Strong stabilization of neutral functional differential equations..IMA J. Math. Control Inform. 19 (2002), 5-23. |
Reference:
|
[4] Hu, G. D.: A stability criterion for the system of high-order neutral delay differential equations..Siberian Math. J. 61 (2020), 1140-1146. |
Reference:
|
[5] Hu, G. D., Liu, M.: Stability criteria of linear neutral systems with multiple delays..IEEE Trans. Automat. Control 52 (2007), 720-724. |
Reference:
|
[6] Islam, S., Liu, P. X., Saddik, A. E., Yang, Y. B.: Bilateral control of teleoperation systems with time delay..IEEE/ASME Trans. Mechatron. 20 (2015), 1-12. |
Reference:
|
[7] Johnson, L. W., Riess, R. Dean, Arnold, J. T.: Introduction to Linear Algebra,.Prentice-Hall, Englewood Cliffs 2000. |
Reference:
|
[8] Kamath, G. K., Jagannathan, K., Raina, G.: Impact of delayed acceleration feedback on the classical car-following model,.IMA J. Appl. Math. 85 (2020), 584-604. |
Reference:
|
[9] Kolmanovskii, V. B., Myshkis, A.: Introduction to Theory and Applications of Functional Differential Equations..Kluwer Academic Publishers, Dordrecht 1999. |
Reference:
|
[10] Kyrychko, Y. N., Blyuss, K. B., Hövel, P., Schöll, E.: Asymptotic properties of the spectrum of neutral delay differential equations..Dynamical Systems 24 (2009), 361-372. |
Reference:
|
[11] Kyrychko, Y. N., Hogan, S. J.: On the use of delay equations in engineering applications..J. Vibration Control 16 (2010), 943-960. |
Reference:
|
[12] Lancaster, P.: The Theory of Matrices with Applications..Academic Press, Orlando 1985. |
Reference:
|
[13] Laub, A. J.: Computational Matrix Analysis..SIAM, Philadelphia 2012. |
Reference:
|
[14] Tong, D., Xu, C., Chen, Q., Zhou, W., Xu, Y.: Sliding mode control for nonlinear stochastic systems with Markovian jumping parameters and mode-dependent time-varying delays..Nonlinear Dynamics 100 (2020), 1343-1358. |
Reference:
|
[15] Tong, D., Xu, C., Chen, Q., Zhou, W.: Sliding mode control of a class of nonlinear systems..J. Franklin Inst. 357 (2020), 1560-1581. |
Reference:
|
[16] Wang, H., Zhu, Q.: Global Stabilization of a Class of Stochastic Nonlinear Time-Delay Systems With SISS Inverse Dynamics..IEEE Transactions on Automatic Control 65 (2020), 4448-4455. |
Reference:
|
[17] Wang, X. T., Zhang, L.: Partial eigenvalue assignment with time delay in high order system using the receptance..Linear Algebra Appl. 523 (2017), 335-345. |
Reference:
|
[18] Xu, C., Tong, D., Chen, Q., Zhou, W., Shi, P.: Exponential Stability of Markovian Jumping Systems via Adaptive Sliding Mode Control..IEEE Trans. Systems Man Cybernet-: Systems 51 (2021), 954-964. |
Reference:
|
[19] Zhu, Q., Huang, T.: Stability analysis for a class of stochastic delay nonlinear systems driven by G-Brownian motion..Systems Control Lett. 140 (2020), 104699. |
. |