[5] Bhatia, G. S., Arora, G.:
Radial basis function methods for solving partial differential equations: A review. Indian J. Sci. Technol. 9 (2016), Article ID 45, 18 pages.
DOI 10.17485/ijst/2016/v9i45/105079
[6] Bouhala, L., Makradi, A., Belouettar, S., Kiefer-Kamal, H., Fréres, P.:
Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model. Composites B, Eng. 55 (2013), 352-361.
DOI 10.1016/j.compositesb.2012.12.013
[7] Bunkure, J. K.: Lebesgue-Bochner spaces and evolution triples. Int. J. Math. Appl. 7 (2019), 41-52.
[12] Dlouhý, L., Pouillon, S.: Application of the design code for steel-fibre-reinforced concrete into finite element software. Beton 116 (2020), 8-13.
[14] Eliáš, J., Vořechovský, M., Skoček, J., Bažant, Z. P.:
Stochastic discrete meso-scale simulations of concrete fracture: Comparison to experimental data. Eng. Fract. Mech. 135 (2015), 1-16.
DOI 10.1016/j.engfracmech.2015.01.004
[16] Eringen, A. C.: Theory of Nonlocal Elasticity and Some Applications. Technical Report 62. Princeton University Press, Princeton (1984).
[19] Fries, T.-P., Belytschko, T.:
The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns. Int. J. Numer. Methods Eng. 68 (2006), 1358-1385.
DOI 10.1002/nme.1761 |
Zbl 1129.74045
[22] Grija, S., Shanthini, D., Abinaya, S.: A review on fiber reinforced concrete. Int. J. Civil Eng. Technol. 7 (2016), 386-392.
[24] Havlásek, P., Grassl, P., Jirásek, M.:
Analysis of size effect on strength of quasi-brittle materials using integral-type nonlocal models. Eng. Fract. Mech. 157 (2016), 72-85.
DOI 10.1016/j.engfracmech.2016.02.029
[25] Hoekstra, A.: Design methodologies for steel-fibre-reinforced concrete and a new methodology for a real time quality control. Beton 116 (2020), 44-49.
[29] Kaliske, M., Dal, H., Fleischhauer, R., Jenkel, C., Netzker, C.:
Characterization of fracture processes by continuum and discrete modelling. Comput. Mech. 50 (2012), 303-320.
DOI 10.1007/s00466-011-0578-5 |
MR 2967876 |
Zbl 1398.74347
[30] Kawde, P., Warudkar, A.:
Steel fibre reinforced concrete: A review. Int. J. Eng. Sci. Res. Technol. 6 (2017), 130-133.
DOI 10.5281/zenodo.233321
[31] Khoei, A. R.:
Extended Finite Element Method: Theory and Applications. Wiley Series in Computational Mechanics. John Wiley & Sons, New York (2015).
DOI 10.1002/9781118869673 |
Zbl 1315.74001
[32] Kozák, V., Chlup, Z.:
Modelling of fibre-matrix interface of brittle matrix long fibre composite by application of cohesive zone method. Key Eng. Materials 465 (2011), 231-234.
DOI 10.4028/www.scientific.net/KEM.465.231
[33] Kozák, V., Chlup, Z., Padělek, P., Dlouhý, I.:
Prediction of the traction separation law of ceramics using iterative finite element modelling. Solid State Phenomena 258 (2017), 186-189.
DOI 10.4028/www.scientific.net/SSP.258.186
[37] Li, X., Gao, W., Liu, W.:
A mesh objective continuum damage model for quasi-brittle crack modelling and finite element implementation. Int. J. Damage Mech. 28 (2019), 1299-1322.
DOI 10.1177/1056789518823876
[41] Moradi, M., Bagherieh, A. R., Esfahani, M. R.:
Constitutive modeling of steel fiber-reinforced concrete. Int. J. Damage Mech. 29 (2020), 388-412.
DOI 10.1177/1056789519851159
[42] Morandotti, M.:
Structured deformation of continua: Theory and applications. Mathematical Analysis of Continuum Mechanics and Industrial Applications II Springer, Singapore (2018), 125-136.
DOI 0.1007/978-981-10-6283-4_11
[45] Pijaudier-Cabot, G., Mazars, J.:
Damage models for concrete. Section 6.13. Handbook of Materials Behavior Models. Volume II Academic Press, London (2001), 500-512 J. Lemaitre.
DOI 10.1016/B978-012443341-0/50056-9
[46] Pike, M. G., Oskay, C.:
XFEM modeling of short microfiber reinforced composites with cohesive interfaces. Finite Elem. Anal. Des. 106 (2005), 16-31.
DOI 10.1016/j.finel.2015.07.007
[47] Povstenko, Yu. Z.:
The nonlocal theory of elasticity and its application to the description of defects in solid bodies. J. Math. Sci. 97 (1999), 3840-3845.
DOI 10.1007/BF02364923
[48] Ray, P.:
Statistical physics perspective of fracture in brittle and quasi-brittle materials. Philos. Trans. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 377 (2019), Article ID 20170396, 13 pages.
DOI 10.1098/rsta.2017.0396
[49] Rektorys, K.:
The Method of Discretization in Time and Partial Differential Equations. Mathematics and Its Applications 4. D. Reidel, Dordrecht (1982).
MR 0689712 |
Zbl 0505.65029
[50] Roubíček, T.:
Nonlinear Partial Differential Equations with Applications. ISNM. International Series of Numerical Mathematics 153. Birkhäuser, Basel (2005).
MR 2176645 |
Zbl 1087.35002
[53] Su, X. T., Yang, Z. J., Liu, G. H.:
Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials: A 3D study. Int. J. Solids Struct. 47 (2010), 2336-2345.
DOI 10.1016/j.ijsolstr.2010.04.031 |
Zbl 1194.74313
[55] Svenning, E., Larsson, F., Fagerström, M.:
A two-scale modeling framework for strain localization in solids: XFEM procedures and computational aspects. Comput. Struct. 211 (2019), 43-54.
DOI 10.1016/j.compstruc.2018.08.003
[56] Swati, R. F., Wen, L. H., Elahi, H., Khan, A. A., Shad, S.:
Extended finite element method (XFEM) analysis of fiber reinforced composites for prediction of micro-crack propagation and delaminations in progressive damage: A review. Microsyst. Technol. 25 (2019), 747-763.
DOI 10.1007/s00542-018-4021-0
[57] Vala, J.: Structure identification of metal fibre reinforced cementitious composites. Algoritmy: 20th Conference on Scientific Computing STU Bratislava, Bratislava (2016), 244-253.
[58] Vala, J., Kozák, V.:
Computational analysis of quasi-brittle fracture in fibre reinforced cementitious composites. Theor. Appl. Fract. Mech. 107 (2020), Article ID 102486, 8 pages.
DOI 10.1016/j.tafmec.2020.102486