Previous |  Up |  Next

Article

Keywords:
homogenization; parabolic problem; multiscale convergence; very weak multiscale convergence; two-scale convergence
Summary:
In this paper we establish compactness results of multiscale and very weak multiscale type for sequences bounded in $L^{2}(0,T;H_{0}^{1}(\Omega ))$, fulfilling a certain condition. We apply the results in the homogenization of the parabolic partial differential equation $\varepsilon ^{p}\partial _{t}u_{\varepsilon }(x,t) -\nabla \cdot ( a( x\varepsilon ^{-1} ,x\varepsilon ^{-2},t\varepsilon ^{-q},t\varepsilon ^{-r}) \nabla u_{\varepsilon }(x,t) ) = f(x,t) $, where $0<p<q<r$. The homogenization result reveals two special phenomena, namely that the homogenized problem is elliptic and that the matching for which the local problem is parabolic is shifted by $p$, compared to the standard matching that gives rise to local parabolic problems.
References:
[1] Allaire, G., Briane, M.: Multiscale convergence and reiterated homogenisation. Proc. R. Soc. Edinb., Sect. A 126 (1996), 297-342. DOI 10.1017/S0308210500022757 | MR 1386865 | Zbl 0866.35017
[2] Allaire, G., Piatnitski, A.: Homogenization of nonlinear reaction-diffusion equation with a large reaction term. Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 56 (2010), 141-161. DOI 10.1007/s11565-010-0095-z | MR 2646529 | Zbl 1205.35019
[3] Bensoussan, A., Lions, J.-L., Papanicolaou, G.: Asymptotic Analysis for Periodic Structures. Studies in Mathematics and Its Applications 5. North-Holland Publishing, Amsterdam (1978). DOI 10.1016/s0168-2024(08)x7015-8 | MR 0503330 | Zbl 0404.35001
[4] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Available at https://arxiv.org/abs/1809.11019 (2018), 14 pages.
[5] Danielsson, T., Johnsen, P.: Homogenization of the heat equation with a vanishing volumetric heat capacity. Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349. DOI 10.1007/978-3-030-27550-1_43
[6] Douanla, H., Woukeng, J. L.: Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages. MR 3414107 | Zbl 1336.35046
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson: A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages. DOI 10.1155/2012/643458 | MR 2875184 | Zbl 1242.35030
[8] Flodén, L., Holmbom, A., Olsson, M., Persson, J.: Very weak multiscale convergence. Appl. Math. Lett. 23 (2010), 1170-1173. DOI 10.1016/j.aml.2010.05.005 | MR 2665589 | Zbl 1198.35023
[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages. DOI 10.1155/2013/329704 | MR 3111807 | Zbl 1293.35027
[10] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.: Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages. DOI 10.1155/2014/101685 | MR 3176810 | Zbl 1406.35140
[11] Holmbom, A.: Homogenization of parabolic equations: An alternative approach and some corrector-type results. Appl. Math., Praha 42 (1997), 321-343. DOI 10.1023/A:1023049608047 | MR 1467553 | Zbl 0898.35008
[12] Johnsen, P., Lobkova, T.: Homogenization of a linear parabolic problem with a certain type of matching between the microscopic scales. Appl. Math., Praha 63 (2018), 503-521. DOI 10.21136/AM.2018.0350-17 | MR 3870146 | Zbl 06986923
[13] Lobkova, T.: Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358. DOI 10.1007/s10255-019-0810-1 | MR 3950176 | Zbl 1416.35032
[14] Lukkassen, D., Nguetseng, G., Wall, P.: Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86. MR 1912819 | Zbl 1061.35015
[15] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989), 608-623. DOI 10.1137/0520043 | MR 0990867 | Zbl 0688.35007
[16] Nguetseng, G.: Asymptotic analysis for a stiff variational problem arising in mechanics. SIAM J. Math. Anal. 21 (1990), 1394-1414. DOI 10.1137/0521078 | MR 1075584 | Zbl 0723.73011
[17] Nguetseng, G., Woukeng, J. L.: $\Sigma$-convergence of nonlinear parabolic operators. Nonlinear Anal., Theory Methods Appl., Ser. A 66 (2007), 968-1004. DOI 10.1016/j.na.2005.12.035 | MR 2288445 | Zbl 1116.35011
[18] Persson, J.: Homogenization of monotone parabolic problems with several temporal scales. Appl. Math., Praha 57 (2012), 191-214. DOI 10.1007/s10492-012-0013-z | MR 2984600 | Zbl 1265.35018
[19] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis. Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012).
[20] Svanstedt, N., Woukeng, J. L.: Periodic homogenization of strongly nonlinear reactiondiffusion equations with large reaction terms. Appl. Anal. 92 (2013), 1357-1378. DOI 10.1080/00036811.2012.678334 | MR 3169106 | Zbl 1271.35006
[21] Zeidler, E.: Nonlinear Functional Analysis and Its Applications II/A: Linear Monotone Operators. Springer, New York (1990). DOI 10.1007/978-1-4612-0985-0 | MR 1033497 | Zbl 0684.47028
Partner of
EuDML logo