[5] Danielsson, T., Johnsen, P.:
Homogenization of the heat equation with a vanishing volumetric heat capacity. Progress in Industrial Mathematics at ECMI 2018 Mathematics in Industry 30. Springer, Cham (2019), 343-349.
DOI 10.1007/978-3-030-27550-1_43
[6] Douanla, H., Woukeng, J. L.:
Homogenization of reaction-diffusion equations in fractured porous media. Electron. J. Differ. Equ. 2015 (2015), Article ID 253, 23 pages.
MR 3414107 |
Zbl 1336.35046
[7] Flodén, L., Holmbom, A., Lindberg, M. Olsson:
A strange term in the homogenization of parabolic equations with two spatial and two temporal scales. J. Funct. Spaces Appl. 2012 (2012), Article ID 643458, 9 pages.
DOI 10.1155/2012/643458 |
MR 2875184 |
Zbl 1242.35030
[9] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.:
A note on parabolic homogenization with a mismatch between the spatial scales. Abstr. Appl. Anal. 2013 (2013), Article ID 329704, 6 pages.
DOI 10.1155/2013/329704 |
MR 3111807 |
Zbl 1293.35027
[10] Flodén, L., Holmbom, A., Lindberg, M. Olsson, Persson, J.:
Homogenization of parabolic equations with an arbitrary number of scales in both space and time. J. Appl. Math. 2014 (2014), Article ID 101685, 16 pages.
DOI 10.1155/2014/101685 |
MR 3176810 |
Zbl 1406.35140
[13] Lobkova, T.:
Homogenization of linear parabolic equations with a certain resonant matching between rapid spatial and temporal oscillations in periodically perforated domains. Acta Math. Appl. Sin., Engl. Ser. 35 (2019), 340-358.
DOI 10.1007/s10255-019-0810-1 |
MR 3950176 |
Zbl 1416.35032
[14] Lukkassen, D., Nguetseng, G., Wall, P.:
Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002), 35-86.
MR 1912819 |
Zbl 1061.35015
[19] Persson, J.: Selected Topics in Homogenization: Doctoral Thesis. Department of Engineering and Sustainable Development, Mid Sweden University, Sundsvall (2012).