Previous |  Up |  Next

Article

Keywords:
principal topology; bounded lattice; generating method; uninorm; triangular norm
Summary:
In this paper, some generating methods for principal topology are introduced by means of some logical operators such as uninorms and triangular norms and their properties are investigated. Defining a pre-order obtained from the closure operator, the properties of the pre-order are studied.
References:
[1] Alexandroff, P.: Diskrete Räume. Mat. Sb. (N.S.) 2 (1937), 501-518.
[2] Birkhoff, G.: Lattice Theory. American Mathematical Society, New York 1948. Zbl 0537.06001
[3] Chen, X.: Cores of Alexandroff spaces.
[4] Çaylı, G. D., Ertuğrul, Ü., Köroğlu, T., Karaçal, F.: Notes on locally internal uninorm on bounded lattices. Kybernetika 53 (2017), 911-921. DOI 
[5] Dahane, I., Lazaar, S., Richmond, T., Turki, T.: On resolvable primal spaces. Quaestiones Mathematicae (2018), 15-35. DOI 
[6] Dixmier, J.: General Topology. Springer-Verlag, 1984.
[7] Echi, O.: Quasi-homeomorphisms, Goldspectral spaces and Jacspectral spaces. Boll Unione Mat. Ital. Sez. B Artic. Ric. Mat. 8 (2003), 489-507.
[8] Echi, O.: The category of flows of Set and Top. Topol. Appl. 159 (2012), 2357-2366. DOI 
[9] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. DOI 
[10] Ertuğrul, Ü., Karaçal, F., Mesiar, R.: Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. Int. J. Intell. Systems 30 (2015), 807-817. DOI 
[11] Fodor, J., Yager, R., Rybalov, A.: Structure of uninorms. Int. J. Uncertain. Fuzziness Knowledge-Based Systems 5 (1997), 411-427. DOI 10.1142/S0218488597000312 | Zbl 1232.03015
[12] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press, 2009. MR 2538324 | Zbl 1206.68299
[13] Karaçal, F., Köroğlu, T.: An Alexandroff Topology Obtained from Uninorms. Submitted (2019).
[14] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets and Systems 261 (2015), 33-43. DOI 
[15] Katsevich, A., Mikusiński, P.: Order of spaces of pseudoquotients. Top. Proc. 44 (2014), 21-31.
[16] Kelley, J. L.: General Topology. Springer, New York 1975.
[17] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: Some notes on U-partial order. Kybernetika 55 (2019), 3, 518-530. DOI 
[18] Lai, H., Zhang, D.: Fuzzy preorder and fuzzy topology. Fuzzy Sets Systems 157 (2006), 14, 1865-1885. DOI 
[19] Lazaar, S., Richmond, T., Houssem, S.: The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces. Comm. Algebra (2019). DOI 
[20] Lazaar, S., Richmond, T., Turki, T.: Maps generating the same primal space. Quaest. Math. 40 (2017), 17-28. DOI 
[21] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Information Sciences 55 (1991), 77-97. DOI  | Zbl 0741.03010
[22] Steiner, A. K.: The lattice of topologies: Structure and complementation. Trans. Amer. Math. Soc. 122 (1969), 379-398. DOI 10.1090/S0002-9947-1966-0190893-2
[23] Walden, P.: Effective topology from spacetime tomography. J. Physics: Conference Series 68 (2007), 12-28.
[24] Yager, R. R., Rybalov, A.: Uninorm aggregation operators. Fuzzy Sets Systems 80 (1996), 111-120. DOI  | Zbl 0871.04007
[25] Zhang, H.-P., Pérez.-Fernández, R., Baets, B. De: Topologies induced by the representatiton of a betweenness relation as a family of order relations. Topol. Appl. 258 (2019), 100-114. DOI 
Partner of
EuDML logo