[1] Alvarez-Garcia, S., Bernardo, G. de, Brisaboa, N. R., Navarro, G.:
A succinct data structure for self-indexing ternary relations. J. Discrete Algorithms 43 (2017), 38-53.
DOI
[2] Bandler, W., Kohout, L. J.:
Fuzzy relational products as a tool for analysis and synthesis of the behaviour of complex natural and artificial systems. In: Theory and Application to Policy Analysis and Information Systems (P. Wang and S. Chang, eds.), Plenum Press, New York 1980, pp3 41-367.
DOI
[3] Bandler, W., Kohout, L. J.:
Semantics of implication operators and fuzzy relational product. Int. J. Man-Machine Studies 12 (1980), 89-116.
DOI
[4] Beall, J., Brady, R., Dunn, J. M., Hazen, A. P., Mares, E., Meyer, R. K., Priest, G., Restall, G., Ripley, D., Slaney, J., Sylvan, R.:
On the ternary relation and conditionality. J. Philosoph. Logic 41 (2012), 595-612.
DOI
[5] Běhounek, L., Bodenhofer, U., Cintula, P.:
Relations in fuzzy class theory: initial steps. Fuzzy Sets Systems 159 (2008), 1729-1772.
DOI
[6] Běhounek, L., Daňková, M.:
Relational compositions in fuzzy class theory. Fuzzy Sets Systems 160 (2008), 1005-1036.
DOI
[7] Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic Publishers/Plenum Publishers, New York 2002.
[8] Bělohlávek, R., Osicka, P.:
Triadic fuzzy Galois connections as ordinary connections. Fuzzy Sets Systems 249 (2014), 83-99.
DOI
[9] Cristea, I.: Several aspects on the hypergroups associated with $n$-ary relations. Analele Stiintifice ale Universitatii Ovidius Constanta 17 (2009), 99-110.
[10] Baets, B. De, Kerre, E. E.:
Fuzzy relational compositions. Fuzzy Sets Systems 60 (1993, 109-120.
DOI
[11] Baets, B. De:
Analytical solution methods for fuzzy relational equations. In: Fundamentals of Fuzzy Sets, The Handbooks of Fuzzy Sets Series (D. Dubois and H. Prade, eds.), Vol. 1, Kluwer Academic Publishers, Dordrecht 2000, pp. 291-340.
DOI |
Zbl 0970.03044
[12] Nola, A. Di, Sessa, S., Pedrycz, W., Sanchez, E.:
Fuzzy Relation Equations and Their Applications to Knowledge Engineering. Kluwer Academic Publishers, Dordrecht 1989.
Zbl 0694.94025
[13] Doignon, J. P., Monjardet, B., Roubens, M., Vincke, Ph.:
Biorder families, valued relations and preference modelling. J. Math. Psychol. 30 (1986), 435-480.
DOI
[14] Dunn, J. M.: Ternary relational semantics and beyond. Logical Studies 7 (2001), 1-20.
[15] Düntsch, I.:
Relation algebras and their application in temporal and spatial reasoning. Artif. Intell. Rev. 23 (2005), 315-357.
DOI
[16] Fodor, J.:
Traces of fuzzy binary relations. Fuzzy Sets Systems 50 (1992), 331-341.
DOI
[17] Ganter, B., Wille, R.: Formal Concept Analysis. Springer-Verlag, Berlin, Heidelberg 1999.
[18] Goguen, J. A.:
L-fuzzy sets. J. Math. Anal. Appl. 18 (1967), 145-174.
DOI |
MR 0224391
[19] Ignatov, D. I., Gnatyshak, D. V., Kuznetsov, S. O., Mirkin, B. G.:
Triadic formal concept analysis and triclustering: searching for optimal patterns. Machine Learning 101 (2015), 271-302.
DOI
[20] Isli, A., Cohn, A.:
A new approch to cyclic ordering of 2D orientations using ternary relation algebra. Artif. Intell. 122 (2000), 137-187.
DOI 10.1016/S0004-3702(00)00044-8
[21] Kim, J., Amir, A., Na, J. C., Park, K., Sim, J. S.:
On representations of ternary order relations in numeric strings. Math. Computer Sci. 11 (2017), 127-136.
DOI
[22] Konecny, J., Osicka, P.:
Triadic concept lattices in the framework of aggregation structures. Inform. Sci. 279 (2014), 512-527.
DOI
[23] Novák, V., Novotný, M.:
On representation of cyclically ordered sets. Czechoslovak Math. J. 39 (1989), 127-132.
DOI
[24] Novák, V., Novotný, M.:
Pseudodimension of relational structures. CzechoslovakMath. J. 49 (1999), 547-560.
DOI
[25] Peirce, C. S.:
On the algebra of logic. Amer. J. Math. 3 (1880), 15-58.
DOI 10.2307/2369442
[26] Pérez-Fernández, R., Baets, B. De:
On the role of monometrics in penalty-based data aggregation. IEEE Trans. Fuzzy Systems 27 (2018), 7, 1456-1468.
DOI
[27] Pérez-Fernández, R., Rademaker, M., Baets, B. De:
Monometrics and their role in the rationalisation of ranking rules. Inform. Fusion 34 (2017), 16-27.
DOI
[28] Pivert, O., Bosc, P.:
Fuzzy Preference Queries to Relational Databases. Imperial College Press, London 2012.
DOI |
Zbl 1246.68011
[29] Pourabdollah, A.: Theory and Practice of The Ternary Relations Model of Information Management. PhD Thesis, University of Nottingham, 2009.
[30] Powers, S.: Practical RDF. O'Reilly, Beijing 2003.
[31] Schröder, B. S.: Ordered Sets. Birkhauser, Boston 2002.
[32] Steel, M.:
Phylogeny: Discrete and Random Processes in Evolution. SIAM, Philadelphia 2016.
DOI
[33] Štěpnička, M., Jayaram, B.:
On the suitability of the Bandler-Kohout subproduct as an inference mechanism. IEEE Trans. Fuzzy Systems 18 (2010), 285-298.
DOI
[34] Štěpnička, M., Baets, B. De:
Implication-based models of monotone fuzzy rule bases. Fuzzy Sets Systems 232 (2013), 134-155.
DOI
[35] Štěpnička, M., Holčapek, M.:
Fuzzy relational compositions based on generalized quantifiers. In: Information Processing and Management of Uncertainty in Knowledge-Based Systems PT II (IPMU'14), Communications in Computer and Information Science, Vol. 443, Springer, Berlin 2014, pp. 224-233.
DOI
[36] Wang, X., Xue, Y.:
Traces and property indicators of fuzzy relations. Fuzzy Sets Systems 246 (2014), 78-90.
DOI
[37] Zadeh, L. A.:
Fuzzy sets. Inform. Control 8 (1965), 338-353.
DOI |
Zbl 0942.00007
[38] Zedam, L., Barkat, O., Baets, B. De:
Traces of ternary relations. Int. J. General Systems 47 (2018), 350-373.
DOI