[4] Ananin, A.Z., Kemer, A.R.: Varieties of associative algebras whose lattices of subvarieties are distributive (Russian). Sibirs. Mat. Zh., 17, 1976, 723-730, Translation: Sib. Math. J. 17 (1976) 549--554.
[5] Azevedo, S.S., Fidelis, M., Koshlukov, P.:
Tensor product theorems in positive characteristic. J. Algebra, 276, 2, 2004, 836-845,
DOI 10.1016/j.jalgebra.2004.01.004
[6] Bahturin, Yu.A.: Identical Relations in Lie Algebras (Russian). 1985, ``Nauka'', Moscow, Translation: VNU Science Press, Utrecht (1987).
[7] Bakhturin, Yu.A., Ol'shanskiĭ, A. Yu.: Identical relations in finite Lie rings (Russian). Mat. Sb., N. Ser., 96, 138, 1975, 543-559, Translation: Math. USSR, Sb. 25 (1975) 507--523.
[8] Belov, A.Ya.: On non-Spechtian varieties (Russian. English summary). Fundam. Prikl. Mat., 5, 1, 1999, 47-66,
[9] Belov, A.Ya.: Counterexamples to the Specht problem (Russian). Mat. Sb., 191, 3, 2000, 13-24, Translation: Sb. Math. 191 (3) (2000) 329--340.
[10] Belov, A.Ya.: The local finite basis property and local representability of varieties of associative rings (Russian). Izv. Ross. Akad. Nauk, Ser. Mat., 74, 1, 2010, 3-134, Translation: Izv. Math. 74 (1) (2010) 1--126.
[11] Belov-Kanel, A., Rowen, L., Vishne, U.: Full exposition of Specht's problem. Serdica Math. J., 38, 1-3, 2012, 313-370,
[12] Benanti, F., Demmel, J., Drensky, V., Koev, P.: Computational approach to polynomial identities of matrices -- a survey. Polynomial Identities and Combinatorial Methods, Pantelleria, Italy, 235, 2003, 141-178, New York, Marcel Dekker,
[13] Bui, T.T.: On the basis of the identities of the matrix algebra of second order over a field of characteristic zero. Serdica, 7, 1981, 187-194,
[15] Colombo, J., Koshlukov, P.:
Central polynomials in the matrix algebra of order two. Linear Algebra Appl., 377, 2004, 53-67,
DOI 10.1016/j.laa.2003.07.011
[16] Macedo, D.L. da Silva: Identidades Polinomiais em Representações de Álgebras de Lie e Crescimento das Codimensões. 2019, Ph.D. Thesis, State University of Campinas.
[17] Macedo, D.L. da Silva, Koshlukov, P.:
Codimension growth for weak polynomial identities, and non-integrality of the PI exponent. Proc. Edinburgh Math. Soc., 63, 4, 2020, 929-949,
DOI 10.1017/S0013091520000243
[18] Vincenzo, O.M. Di, Scala, R. La: Weak polynomial identities for $M_{1,1}(E)$. Serdica Math. J., 27, 3, 2001, 233-248,
[19] Vincenzo, O.M. Di, Scala, R. La:
Robinson-Schensted-Knuth correspondence and weak polynomial identities of $M_{1,1}(E)$. Algebra Colloq., 12, 2, 2005, 333-349,
DOI 10.1142/S1005386705000325
[20] Filippov, V.T., Kharchenko, V.K., (Eds.), I.P. Shestakov:
The Dniester Notebook. Unsolved Problems in the Theory of Rings and Modules (Russian). 4th ed. Mathematics Institute, Siberian Branch of the Russian Academy of Sciences, Novosibirsk., 1993, Mathematics Institute, Siberian Branch of the Russian Academy of Sciences, Novosibirsk. Translation:
https://math.usask.ca/ ̃bremner/research/publications/dniester.pdf.
[21] Domokos, M.: New identities for $3\times 3$ matrices. Lin. Multilin. Algebra, 38, 1995, 207-213,
[22] Domokos, M., Drensky, V.:
Cocharacters for the weak polynomial identities of the Lie algebra of $3\times 3$ skew-symmetric matrices. Adv. Math., 374, 2020, 107343,
DOI 10.1016/j.aim.2020.107343
[23] Dorofeev, G.V.: Properties of the join of varieties of algebras (Russian). Algebra i Logika, 16, 1977, 24-39, Translation: Algebra and Logic 16 (1977) 17--27.
[24] Drensky, V.: Identities in Lie algebras (Russian). Algebra i Logika, 13, 1974, 265-290, Translation: Algebra and Logic 13 (1974) 150--165.
[25] Drensky, V.: Solvable Varieties of Lie Algebras (Russian). 1979, Ph.D. thesis, Dept. of Mechanics and Math., Moscow State Univ., Moscow.
[26] Drensky, V.: Identities in matrix Lie algebras (Russian). Tr. Semin. Im. I.G. Petrovskogo, 6, 1981, 47-55, Translation: J. Sov. Math. 33 (1986) 987--994.
[27] Drensky, V.: Representations of the symmetric group and varieties of linear algebras (Russian). Mat. Sb., 115, 1981, 98-115, Translation: Math. USSR Sb. 43 (1981) 85--101.
[28] Drensky, V.:
A minimal basis for the identities of a second-order matrix algebra over a field of characteristic 0 (Russian). Algebra i Logika, 20, 1981, 282-290, Translation: Algebra and Logic, 20 (1981) 188--194.
DOI 10.1007/BF01669018
[29] Drensky, V.S.: Weak identities in the algebra of symmetric matrices of order two (Russian). Pliska, Stud. Math. Bulg., 8, 1986, 77-84, Translation: arXiv:2008.13286v1 [math.RA].
[31] Drensky, V.:
New central polynomials for the matrix algebra. Israel J. Math., 92, 1995, 235-248,
DOI 10.1007/BF02762079
[32] Drensky, V.: Free Algebras and PI-Algebras. 2000, Springer-Verlag, Singapore,
[33] Drensky, V.: Weak polynomial identities of degree three. (in preparation).
[34] Drensky, V., Formanek, E.: Polynomial Identity Rings. Advanced Courses in Mathematics, CRM Barcelona, 2004, Birkhäuser Verlag, Basel,
[35] Drensky, V., Kasparian, A.: Some polynomial identities of matrix algebras. C.R. Acad. Bulg. Sci., 36, 1983, 565-568,
[36] Drensky, V., Kasparian, A.: Polynomial identities of eighth degree for $3 \times 3$ matrices. Annuaire Univ. Sofia Fac. Math. Méc., 77, 1, 1983, 175-195,
[37] Drensky, V., Kasparian, A.:
A new central polynomial for $3 \times 3$ matrices. Commun. in Algebra, 13, 1985, 745-752,
DOI 10.1080/00927878508823188
[38] Drensky, V.S., Koshlukov, P.E.: Weak polynomial identities for a vector space with a symmetric bilinear form. Mathematics and Education in Mathematics, Proc. 16th Spring Conf., Sunny Beach/Bulg, 1987, 213-219, Publishing House of the Bulgarian Academy of Sciences, Sofia, arXiv:1905.08351v1 [math.RA].
[39] Drensky, V., Koshlukov, P.: Polynomial identities for Jordan algebras of degree two. J. Indian Math. Soc., New Ser., 55, 1-4, 1990, 1-30,
[40] Drensky, V., Cattaneo, G.M. Piacentini:
A central polynomial of low degree for $4 \times 4$ matrices. J. Algebra, 168, 1994, 469-478,
DOI 10.1006/jabr.1994.1240
[41] Drensky, V., Rashkova, Ts.G.:
Weak polynomial identities for the matrix algebras. Commun. in Algebra, 21, 10, 1993, 3779-3795,
DOI 10.1080/00927879308824765
[42] Drensky, V., Vladimirova, L.A.: Varieties of pairs of algebras with a distributive lattice of subvarieties. Serdica, 12, 1986, 166-170,
[43] Drensky, V., Zaicev, M.: Central polynomials for algebras of multiplications of simple algebras. (in preparation).
[44] Dubnov, J.: Sur une généralisation de l'équation de Hamilton-Cayley et sur les invariants simultanés de plusieurs affineurs (Russian). Proc. Seminar on Vector and Tensor Analysis, 2--3, 1935, 351-367, Mechanics Research Inst., Moscow State Univ, (Zbl. für Math. 12 (1935), p. 176.).
[45] Dubnov, J., Ivanov, V.: Sur l'abaissement du degré des polynômes en affineurs. C.R. (Doklady) Acad. Sci. USSR, 41, 1943, 96-98, (See also MR 6 (1945) p. 113, Zbl. für Math. 60 (1957) p. 33.).
[46] Filippov, V.T.: On the variety of Mal'tsev algebras (Russian). Algebra i Logika, 20, 1981, 300-314, Translation: Algebra and Logic 20 (1981) 200--210.
[50] Formanek, E.:
The Nagata-Higman theorem. Acta Appl. Math., 21, 1--2, 1990, 185-192,
DOI 10.1007/BF00053297
[51] Formanek, E.: The polynomial Identities and Invariants of $n \times n$ Matrices. CBMS Regional Conf. Series in Math., 78, 1991, American Mathematical Society, Providence RI,
[52] Genov, G.K.:
A basis of identities of the algebra of third-order matrices over a finite field (Russian). Algebra i Logika, 20, 1981, 365-388, Translation: Algebra and Logic, 20 (1981) 241-257.
DOI 10.1007/BF01669108
[53] Genov, G.K., Siderov, P.N.: A basis of the identities of the fourth order matrix algebra over a finite field I (Russian). Serdica, 8, 1982, 313-323,
[54] Genov, G.K., Siderov, P.N.: A basis of the identities of the fourth order matrix algebra over a finite field II (Russian). Serdica, 8, 1982, 351-366,
[55] Giambruno, A., Valenti, A.:
Central polynomials and matrix invariants. Israel J. Math., 96, 1996, 281-297,
DOI 10.1007/BF02785544
[56] Giambruno, A., Zaicev, M.:
Polynomial Identities and Asymptotic Methods. Mathematical Surveys and Monographs, 122, 2005, American Mathematical Society, Providence, RI,
DOI 10.1090/surv/122/01
[57] Grishin, A.V.: Examples of T-spaces and T-ideals over a field of characteristic 2 without the finite basis property (Russian. English summary). Fundam. Prikl. Mat., 5, 1, 1999, 101-118,
[58] Grishin, A.V.:
On non-Spechtianness of the variety of associative rings that satisfy the identity $x^{32}=0$. Electron. Res. Announc. Amer. Math. Soc., 6, 7, 2000, 50-51,
DOI 10.1090/S1079-6762-00-00080-9
[59] Gupta, C.K., Krasilnikov, A.N.:
A simple example of a non-finitely based system of polynomial identities. Commun. in Algebra, 30, 10, 2002, 4851-4866,
DOI 10.1081/AGB-120014672
[62] Herstein, I.N.: Noncommutative Rings. 1968, Mathematical Association of America. Distributed by John Wiley and Sons,
[63] Higman, G.:
Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc., III. Ser., 2, 1952, 326-336,
DOI 10.1112/plms/s3-2.1.326
[65] Il'tyakov, A.V.: The Specht property of the ideals of identities of certain simple nonassociative algebras (Russian). Algebra i Logika, 24, 3, 1985, 327-351, Translation: Algebra and Logic 24 (185) 210--228.
[66] Il'tyakov, A.V.: On finite basis of identities of Lie algebra representations. Nova J. Algebra Geom., 1, 3, 1992, 207-259,
[68] Isaev, I.M.: Identities of Finite Algebras (Russian). 1985, Ph.D. thesis, Dept. of Mechanics and Math., Novosibirsk State Univ.
[69] Isaev, I.M.: Identities of the algebra of a bilinear form over a finite field (Russian). Some Problems and Questions of Analysis and Algebra, 1985, 61-75, Interuniv. Collect. Sci. Works, Novosibirsk,
[70] Isaev, I.M.:
Finite-dimensional right alternative algebras that do not generate finitely based varieties (Russian). Algebra and Logika, 25, 2, 1986, 136-153, Translation: Algebra and Logic 25 (1986) 86--96.
DOI 10.1007/BF01978883
[71] Isaev, I.M.:
On the join of Spechtian varieties of algebras (Russian). Sib. Èlektron. Mat. Izv., 15, 2018, 1498-1505,
DOI 10.33048/semi.2018.15.124
[72] Isaev, I.M., Kislitsin, A.V.: Identities in vector spaces and examples of finite-dimensional linear algebras having no finite basis of identities (Russian). Algebra i Logika, 52, 4, 2013, 435-460, Translation: Algebra and Logic 52 (4) (2013) 290--307.
[73] Isaev, I.M., Kislitsin, A.V.: On identities of vector spaces embedded in finite associative algebras (Russian). Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 15, 3, 2015, 69-77, Novosibirsk State University, Translation: J. Math. Sci. 221 (2017) 849--856.
[74] Jacobson, N.:
PI-algebras. An Introduction. 1975, Springer, Lecture Notes in Mathematics, 441.
DOI 10.1007/BFb0070023
[75] James, G.D.:
A note on the T-ideal generated by $S_3[X_1,X_2,X_3]$. Isr. J. Math., 29, 1, 1978, 105-112, Springer,
DOI 10.1007/BF02760404
[76] Kanel-Belov, A., Karasik, Ya., Rowen, L.H.: Computational Aspects of Polynomial Identities: Volume l, Kemer's Theorems. Monographs and Research Notes in Mathematics, 16, 2016, CRC Press, Boca Raton, FL,
[77] Kaplansky, I.: Problems in the theory of rings. Report of a Conference on Linear Algebras, June, 1956, 502, 1957, 1-3, National Acad. of Sci.--National Research Council, Washington, Publ.,
[78] Kaplansky, I.: Problems in the theory of rings revised. Amer. Math. Monthly, 77, 5, 1970, 445-454, Taylor &Francis,
[79] Kemer, A.R.: Nonmatrix varieties (Russian). Algebra i Logika, 19, 3, 1980, 255-283, Springer, Translation: Algebra and Logic 19 (1980) 157--178.
[80] Kemer, A.R.: Varieties and ${\mathbb Z}_2$-graded algebras (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 48, 5, 1984, 1042-1059, IOP Publishing, Translation: {Math. USSR, Izv.} 25 (2) (1985) 359--374.
[81] Kemer, A.R.:
Finite basis property of identities of associative algebras (Russian). Algebra i Logika, 26, 5, 1987, 362-397, Springer, Algebra and Logic 26 (5) (1987) 362--397.
DOI 10.1007/BF01978692
[82] Kemer, A.R.: Identities of finitely generated algebras over an infinite field. Izv. Akad. Nauk SSSR, Ser. Mat., 54, 4, 1990, 726-753, IOP Publishing, Translation: Math. USSR, Izv. 37 (1) (1991) 69--96.
[83] Kemer, A.R.: Ideals of Identities of Associative Algebras. 1991, American Mathematical Society, Providence,
[84] Kharchenko, V.K.: A remark on central polynomials (Russian). Mat. Zametki, 26, 3, 1979, 345-346, Translation: {Math. Notes} 26 (3) (1979) p. 665.
[85] Kislitsin, A.V.: On identities of spaces of linear transformations over infinite field (Russian). Izvestiya Altai State Univ., 65, 1-2, 2010, 37-41,
[86] Kislitsin, A.V.:
The Specht property of L-varieties of vector spaces over an arbitrary field (Russian). Algebra i Logika, 57, 5, 2018, 556-566, Translation: {Algebra and Logic} 57 (5) (2018) 360--367.
DOI 10.33048/alglog.2018.57.504
[87] Klein, A.A.: $PI$-algebras satisfying identities of degree 3. Trans. Amer. Math. Soc., 201, 1975, 263-277,
[88] Koshlukov, P.:
Polynomial identities for a family of simple Jordan algebras. Commun. in Algebra, 16, 7, 1988, 1325-1371, Taylor & Francis,
DOI 10.1080/00927878808823634
[89] Koshlukov, P.:
Basis of the identities of the matrix algebra of order two over a field of characteristic $p\ne 2$. J. Algebra, 241, 1, 2001, 410-434, Elsevier,
DOI 10.1006/jabr.2000.8738
[90] Krakowski, D., Regev, A.: The polynomial identities of the Grassman algebra. Trans. Amer. Math. Soc., 1973, 429-438, JSTOR,
[92] Kuz'min, E.N.: On the Nagata-Higman theorem (Russian). Proc. dedicated to the 60th birthday of Acad. Iliev, 1975, 101-107, Sofia,
[93] Kuz'min, Yu.V.: Free center-by-metabelian groups, Lie algebras, and ${\mathcal D}$-groups. Izv. Akad. Nauk SSSR, Ser. Mat., 41, 1, 1977, 3-33, Translation: {Math. USSR, Izv.} 11 (1977), 1--30.
[94] Latyshev, V.N., Shmelkin, A.L.: A certain problem of Kaplansky (Russian). Algebra i logika, 8, 4, 1969, 447-448, Translation: {Algebra and Logic} 8 (1969) p. 257.
[97] Lopatin, A.: Identities for the Lie algebra $gl(2)$ over an infinite field of characteristic two. arXiv preprint arXiv:1612.07748, arXiv: 1612.07748v1 [math.RA].
[98] L'vov, I.V.: On varieties of associative rings. I (Russian). Algebra i Logika, 12, 3, 1973, 269-297, Springer, Translation: {Algebra and Logic} 12 (1973) 150--167.
[99] L'vov, I.V.: Finite-dimensional algebras with infinite bases of identities (Russian). Sib. Mat. Zh., 19, 1, 1978, 91-99, Springer, Translation: {Sib. Math. J.} 19 (1) (1978) 63--69.
[100] L'vov, I.V.: Varieties generated by finite alternative rings (Russian). Algebra i Logika, 17, 3, 1978, 282-286, Springer, Translation: {Algebra and Logic} 17 (3) (1978) 195--198.
[101] Malcev, A.I.: On algebras defined by identities (Russian). Mat. Sb., 26, 1950, 19-33,
[102] Mal'tsev, Yu.N., Kuz'min, E.N.: A basis for the identities of the algebra of second-order matrices over a finite field (Russian). Algebra i Logika, 17, 1, 1978, 28-32, Springer, Translation: {Algebra and Logic} 17 (1978) 18--21.
[103] Mal'tsev, Yu.N., Parfenov, V.A.: A nonassociative algebra having no finite basis for its laws (Russian). Sib. Mat. Zh., 18, 6, 1977, 1420-1421, Springer, Translation: {Sib. Math. J.} 18 (1977) 1007--1008.
[104] Medvedev, Yu.A.: Identities of finite Jordan $\Phi $-algebras (Russian). Algebra i Logika, 18, 6, 1979, 723-748, Springer, Translation: {Algebra and Logic} 18 (6) (1979) 460--478.
[105] Nagata, M.: On the nilpotency of nil-algebras. J. Math. Soc. Japan, 4, 3-4, 1952, 296-301, The Mathematical Society of Japan,
[106] Neumann, B.H.:
Identical relations in groups. I. Math. Ann., 114, 1, 1937, 506-525, Springer,
DOI 10.1007/BF01594191
[108] Oates-MacDonald, S., Vaughan-Lee, M.R.:
Varieties that make one Cross. J. Aust. Math. Soc., Ser. A, 26, 3, 1978, 368-382, Cambridge University Press,
DOI 10.1017/S1446788700011897
[109] Okhitin, S.V.: On varieties defined by two-variable identities (Russain). Ref. Zh. Mat., 6A366DEP, 1986, Moskov. Gos. Univ. Moscow,
[111] Olsson, J.B., Regev, A.:
On the $T$-ideal generated by a standard identity. Isr. J. Math., 26, 2, 1977, 97-104, Springer,
DOI 10.1007/BF03007661
[112] Plotkin, B.I.: Varieties of group representations (Russian). Usp. Mat. Nauk, 32, 5, 1977, 3-68, IOP Publishing, Translation: {Russ. Math. Surv.} 32 (5) (1977) 1--72.
[113] Plotkin, P.I., Vovsi, S.V.: Varieties of Group Representations. General Theory, Relations and Applications (Russian). 1983, Zinatne, Riga,
[114] Polikarpov, S.V., Shestakov, I.P.: Nonassociative affine algebras (Russian). Algebra i Logika, 29, 6, 1990, 709-723, Springer, Translation: {Algebra and Logic} 29 (6) (1990) 458--466.
[115] Polin, S.V.: Identities of finite algebras (Russian). Sibirsk. Mat. Zh., 17, 6, 1976, 1356-1366, Springer, Translation: {Sib. Math. J.} 17 (6) (1976) 992--999.
[116] Popov, A.: Varieties of associative algebras with unity whose lattice of subvarieties is distributive. I (Russian). Annuaire Univ. Sofia Fac. Math. M{é}c, 79, 1, 1985, 223-244,
[117] Popov, A.: Identities of the tensor square of a Grassmann algebra (Russian). Algebra i Logika, 21, 4, 1982, 442-471 , Translation: {Algebra and Logic} 21 (1982) 296--316.
[118] Popov, A., Chekova, P.: Varieties of associative algebras with identity whose lattice of subvarieties is distributive (Russian). Annuaire Univ. Sofia Fac. Math. Méc., 77, 1, 1983, 205-222,
[119] Popov, A., Chekova, P.: Some distributive lattices of unitary varieties of associative algebras (Russian). Annuaire Univ. Sofia Fac. Math. Inform., 81, 1, 1987, 243-260,
[120] Popov, A., Nikolaev, R.: Varieties of associative algebras with unity whose lattice of subvarieties is distributive. II (Russian). Annuaire Univ. Sofia Fac. Math. Méc., 80, 1, 1986, 15-23,
[121] Procesi, C.: Rings with Polynomial Identities. 17, 1973, Marcel Dekker,
[122] Razmyslov, Yu.P.: Finite basing of the identities of a matrix algebra of second order over a field of characteristic zero (Russian). Algebra i Logika, 12, 1, 1973, 83-113, Springer, Translation: {Algebra and Logic} 12 (1) (1973) 47--63.
[123] Razmyslov, Yu.P.: On a problem of Kaplansky (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 37, 3, 1973, 483-501, IOP Publishing, Translation: {Math. USSR, Izv.} 7 (3) (1973) 479--496.
[124] Razmyslov, Yu.P.: Trace identities of full matrix algebras over a field of characteristic zero (Russian). Izv. Akad. Nauk SSSR, Ser. Mat., 38, 4, 1974, 723-756, IOP Publishing, Translation: {Math. USSR, Izv.} 8 (4) (1974) 727--760.
[125] Razmyslov, Yu.P.: Finite basis property for identities of representations of a simple three-dimensional Lie algebra over a field of characteristic zero (Russian). Algebra, Work Collect., dedic. O. Yu. Shmidt, 1982, 139-150, Moskva, Translation: Transl. Amer. Math. Soc. Ser. 2 140 (1988), 101--109.
[126] Razmyslov, Yu.P.: Identities of Algebras and Their Representations (Russian). Sovremennaya Algebra', 1989, Nauka, Moscow, Translation: {Translations of Math. Monographs} 138, AMS, Providence, R.I. (1994).
[127] Regev, A.:
The $T$-ideal generated by the standard identity $s_3[x_1,x_2,x_3]$. Isr. J. Math., 26, 2, 1977, 105-125, Springer,
DOI 10.1007/BF03007662
[128] A.Regev:
$T$-Ideals of degree 3 are finitely generated. Bull. Lond. Math. Soc., 10, 3, 1978, 261-266, Oxford University Press,
DOI 10.1112/blms/10.3.261
[129] Regev, A.:
Algebras satisfying a Capelli identity. Isr. J. Math., 33, 2, 1979, 149-154, Springer,
DOI 10.1007/BF02760555
[130] Regev, A.: The polynomial identities of matrices in characteristic zero. Commun. in Algebra, 8, 15, 1980, 1417-1467, Taylor & Francis,
[131] Rowen, L.H.:
Polynomial Identities in Ring Theory. 1980, Academic Press,
Zbl 0461.16001
[132] Semenov, K.N.: A basis of identities of the Lie algebra sl(2) over a finite field (Russian). Mat. Zametki, 52, 2, 1992, 114-119, Russian Academy of Sciences, Translation: Math. Notes 52 (2) (1992) 835--839.
[133] Specht, W.: Gesetze in Ringen. I. Math. Z., 52, 1, 1950, 557-589, Springer,
[134] Vajs, A.Ya., Zel'manov, E.I.: Kemer's theorem for finitely generated Jordan algebras (Russian). Izv. Vyssh. Uchebn. Zaved., Mat., 6, 1989, 42-51, Kazan (Volga region) Federal University, Translation: Sov. Math. (Izvestiya VUZ. Matematika) 33 (6) (1990) 38--47.
[135] Vasilovskij, S.Yu.: Basis of identities of a three-dimensional simple Lie algebra over an infinite field (Russian). Algebra i Logika, 28, 5, 1989, 534-554, Springer, Translation: {Algebra and Logic} 28 (5) (1989) 355--368.
[136] Vasilovskij, S.Yu.: Basis of identities of a Jordan algebra of a bilinear form over an infinite field (Russian). Tr. Inst. Mat. (Novosibirsk), 16, 1989, 5-37, Sobolev Institute of Mathematics of the Siberian Branch of the Russian, Translation: {Siberian Adv. Math.} 1 (1991) 142--185.
[137] Vaughan-Lee, M.R.:
Varieties of Lie algebras. Q. J. Math., Oxf. II. Ser., 21, 3, 1970, 297-308, Oxford University Press,
DOI 10.1093/qmath/21.3.297
[138] Vaughan-Lee, M.R.:
Abelian-By-Nilpotent Varities of Lie Algebras. J. Lond. Math. Soc., II. Ser., 11, 3, 1975, 263-266, Wiley Online Library,
DOI 10.1112/jlms/s2-11.3.263
[139] Vladimirova, L.A., Drensky, V.S.: Varieties of associative algebras with identity of degree three (Russian). Pliska, Stud. Math. Bulgar., 8, 1986, 144-157,
[140] Volichenko, I.B.: Varieties of Lie algebras with the identity $[[X_1,X_2, X_3],[X_4, X_5, X_6]]= 0$ over a field of characteristic zero (Russian). Sibirsk. Mat. Zh., 25, 3, 1984, 40-54, Springer, Translation: {Sib. Math. J.} 25 (1984) 370--382.
[141] Vovsi, S.M.: Triangular Products of Group Representations and Their Applications. Progress in Math., 17, 1981, Birkhäuser, Boston, Mass.,
[142] Wagner, W.:
Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme. Math. Ann., 113, 1936, 528-567,
DOI 10.1007/BF01571649
[143] Zhevlakov, K.A., Slinko, A.M., Shestakov, I.P., Shirshov, A.I.: Rings That Are Nearly Associative (Russian). 1978, Nauka, Moscow, Translation: Academic Press, New York (1982).