[1] Bai, R., Guo, L., Li, J., Wu, Y.: Rota-Baxter 3-Lie algebras. J. Math. Phys., 54, 6, 2013, 063504,
[2] Baxter, G.:
An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math., 10, 1960, 731-742,
DOI 10.2140/pjm.1960.10.731
[3] Belavin, A.A., Drinfel'd, V.G.:
Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. its Appl., 16, 3, 1982, 159-180,
DOI 10.1007/BF01081585
[4] Benito, P., Gubarev, V., Pozhidaev, A.:
Rota-Baxter operators on quadratic algebras. Mediterr. J. Math, 15, 2018, 1-23,
DOI 10.1007/s00009-018-1234-5
[5] Chengand, Y., Su, Y.:
Quantum deformations of the Heisenberg-Virasoro algebra. Algebra Colloq., 20, 2, 2013, 299-308,
DOI 10.1142/S1005386713000266
[6] Graaf, W.A. De:
Classification of nilpotent associative algebras of small dimension. Int. J. Algebra Comput., 28, 1, 2018, 133-161,
DOI 10.1142/S0218196718500078
[7] Ebrahimi-Fard, K.:
Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys., 61, 2, 2002, 139-147,
DOI 10.1023/A:1020712215075
[8] Gao, X., Liu, M., Bai, C, Jing, N.:
Rota-Baxter operators on Witt and Virasoro algebras. J. Geom. Phys., 108, 2016, 1-20,
DOI 10.1016/j.geomphys.2016.06.007
[9] Guo, L.: An Introdction to Rota-Baxter Algebra. 2012, International Press, Beijing, China,
[11] Guo, L., Liu, Z.: Rota-Baxter operators on generalized power series rings. J. Algebra Its Appl., 8, 4, 2009, 557-564,
[12] Hazlett, O.C.:
On the classification and invariantive characterization of nilpotent algebras. Am. J. Math., 38, 2, 1916, 109-138,
DOI 10.2307/2370262
[13] Karimjanov, I., Kaygorodov, I., Ladra, M.:
Rota-type operators on null-filiform associative algebras. Linear and Multilinear algebra, 68, 1, 2020, 205-219,
DOI 10.1080/03081087.2018.1501331
[14] Kruse, R.L., Price, D.T.: Nilpotent Rings. 1969, Gordon and Breach Science Publishers, New York,
[16] Mazurek, R.:
Rota-Baxter operators on skew generalized power series rings. J. Algebra Its Appl., 13, 7, 2014, 1450048,
DOI 10.1142/S0219498814500480
[17] Mazzolla, G.:
The algebraic and geometric classification of associative algebras of dimension five. Manuscr. Math., 27, 1, 1979, 81-101,
DOI 10.1007/BF01297739
[18] Mazzolla, G.:
Generic finite schemes and Hochschild cocycles. Comment. Math. Helv., 55, 2, 1980, 267-293,
DOI 10.1007/BF02566686
[19] Pan, Y., Liu, Q., Bai, C., Guo, L.: Post Lie algebra structures on the Lie algebra $sl(2,\mathbb {C})$. Electron. J. Linear Algebra, 23, 2012, 180-197,
[20] Pei, J., Bai, C., Guo, L.:
Rota-Baxter operators on $sl(2,\mathbb {C})$ and solutions of the classical Yang-Baxter equation. J. Math. Phys., 55, 2, 2014, 021701,
DOI 10.1063/1.4863898
[21] Tang, X., Zhang, Y., Sun., and Q.: Rota-Baxter operators on 4-dimensional complex simple associative algebras. Appl. Math. Comput., 229, 2014, 173-186,
[22] Yu, H.:
Classification of monomial Rota-Baxter operators on $k[x]$. J. Algebra Its Appl., 15, 5, 2016, 1650087,
DOI 10.1142/S0219498816500870
[23] Zheng, S., Guo, L., Rosenkranz, M.:
Rota-Baxter operators on the polynomial algebra, integration, and averaging operators. Pac. J. Math., 275, 2, 2015, 481-507,
DOI 10.2140/pjm.2015.275.481