Previous |  Up |  Next

Article

Keywords:
quasigroup; parastrophe; parastrophic symmetry; parastrophic orbit; translation; direction; matrix quasigroup
Summary:
In each quasigroup $Q$ there are defined six types of translations: the left, right and middle translations and their inverses. Two translations may coincide as permutations of $Q$, and yet be different when considered upon the web of the quasigroup. We shall call each of the translation types a direction and will associate it with one of the elements $\iota, l, r, s, ls $ and $rs$, i.e., the elements of a symmetric group $S_3$. Properties of the directions are considered in part 1 of "Classification of quasigroups according to directions of translations I" by F. M. Sokhatsky and A. V. Lutsenko. Let ${^{\sigma}\mathcal{M}}$ denote the set of all translations of a direction $\sigma\in S_{3}$. The conditions ${^{\sigma}\mathcal{M}}={^{\kappa}\mathcal{M}}$, where $\sigma,\kappa\in S_{3}$ and $\sigma\ne\kappa$, define nine quasigroup varieties. Four of them are well known: $LIP$, $RIP$, $MIP$ and $CIP$. The remaining five quasigroup varieties are relatively new because they are left and right inverses of $ CIP$ variety and generalization of commutative, left and right symmetric quasigroups.
References:
[1] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops. Nauka, Moskva, 1967 (Russian).
[2] Belousov V. D., Curkan B. V.: Crossed-inverse quasigroups (CI-quasigroups). Izv. Vysš. Učebn. Zaved. Math. 1969 (1969), no. 3(82), 21–27 (Russian).
[3] Duplák J.: Quasigroups determined by balanced identities of length $\leqslant6$. Czechoslovak Math. J. 36(111) (1986), no. 4, 599–616. DOI 10.21136/CMJ.1986.102119
[4] Issa A. N.: On quasigroups with the left loop property. Comment. Math. Univ. Carolin. 41 (2000), no. 4, 663–669.
[5] Izbash V., Labo N.: Crossed-inverse-property groupoids. Bul. Acad. Ştiinţe Repub. Mold. Mat. (2007), no. 2, 101–106.
[6] Keedwell A. D., Shcherbacov V. A.: On $m$-inverse loops and quasigroups with a long inverse cycle. Australas. J. Combin. 26 (2002), 99–119. Zbl 1020.20041
[7] Keedwell A. D., Shcherbacov V. A.: Construction and properties of $(r, s, t)$-inverse quasigroups. I. The 18th British Combinatorial Conf., Brighton, 2001, Discrete Math. 266 (2003), no. 1–3, 275–291. DOI 10.1016/S0012-365X(02)00814-2
[8] Keedwell A. D., Shcherbacov V. A.: Construction and properties of $(r, s, t)$-inverse quasigroups. II. Discrete Math. 288 (2004), no. 1–3, 61–71. DOI 10.1016/j.disc.2004.06.020
[9] Krainichuk H., Tarkovska O.: Semi-symmetric isotopic closure of some group varieties and the corresponding identities. Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(85) (2017), no. 3, 3–22.
[10] Krapež A.: Generalized quadratic quasigroup equations with three variables. Quasigroups Related Systems 17 (2009), no. 2, 253–270.
[11] Lindner C. C.: Totally symmetric and semi-symmetric quasigroups have the intersection preserving finite embeddability property. Period. Math. Hungar. 8 (1977), no. 1, 33–39. DOI 10.1007/BF02018044
[12] Smith J. D. H.: An Introduction to Quasigroups and Their Representations. Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, 2007. Zbl 1122.20035
[13] Sokhatsky F. M.: On pseudoisomorphy and distributivity of quasigroups. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(81) (2016), 125–142.
[14] Sokhatsky F. M.: Parastrophic symmetry in quasigroup theory. Visnik DonNU. Ser. A: Natural Sciences 1–2 (2016), 70–83.
[15] Sokhatsky F. M., Lutsenko A. V.: The bunch of varieties of inverse property quasigroups. Visnik DonNU. Ser. A: natural Sciences 1–2 (2018), 56–69.
[16] Sokhatsky F. M., Lutsenko A. V.: Classification of quasigroups according to directions of translations I. Comment. Math. Univ. Carolin. 4 (2020), no. 4, 567–579.
Partner of
EuDML logo