[1] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops. Nauka, Moskva, 1967 (Russian).
[2] Belousov V. D., Curkan B. V.: Crossed-inverse quasigroups (CI-quasigroups). Izv. Vysš. Učebn. Zaved. Math. 1969 (1969), no. 3(82), 21–27 (Russian).
[3] Duplák J.:
Quasigroups determined by balanced identities of length $\leqslant6$. Czechoslovak Math. J. 36(111) (1986), no. 4, 599–616.
DOI 10.21136/CMJ.1986.102119
[4] Issa A. N.: On quasigroups with the left loop property. Comment. Math. Univ. Carolin. 41 (2000), no. 4, 663–669.
[5] Izbash V., Labo N.: Crossed-inverse-property groupoids. Bul. Acad. Ştiinţe Repub. Mold. Mat. (2007), no. 2, 101–106.
[6] Keedwell A. D., Shcherbacov V. A.:
On $m$-inverse loops and quasigroups with a long inverse cycle. Australas. J. Combin. 26 (2002), 99–119.
Zbl 1020.20041
[7] Keedwell A. D., Shcherbacov V. A.:
Construction and properties of $(r, s, t)$-inverse quasigroups. I. The 18th British Combinatorial Conf., Brighton, 2001, Discrete Math. 266 (2003), no. 1–3, 275–291.
DOI 10.1016/S0012-365X(02)00814-2
[8] Keedwell A. D., Shcherbacov V. A.:
Construction and properties of $(r, s, t)$-inverse quasigroups. II. Discrete Math. 288 (2004), no. 1–3, 61–71.
DOI 10.1016/j.disc.2004.06.020
[9] Krainichuk H., Tarkovska O.: Semi-symmetric isotopic closure of some group varieties and the corresponding identities. Bul. Acad. Ştiinţe Repub. Mold. Mat. 3(85) (2017), no. 3, 3–22.
[10] Krapež A.: Generalized quadratic quasigroup equations with three variables. Quasigroups Related Systems 17 (2009), no. 2, 253–270.
[11] Lindner C. C.:
Totally symmetric and semi-symmetric quasigroups have the intersection preserving finite embeddability property. Period. Math. Hungar. 8 (1977), no. 1, 33–39.
DOI 10.1007/BF02018044
[12] Smith J. D. H.:
An Introduction to Quasigroups and Their Representations. Studies in Advanced Mathematics, Chapman & Hall/CRC, Boca Raton, 2007.
Zbl 1122.20035
[13] Sokhatsky F. M.: On pseudoisomorphy and distributivity of quasigroups. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(81) (2016), 125–142.
[14] Sokhatsky F. M.: Parastrophic symmetry in quasigroup theory. Visnik DonNU. Ser. A: Natural Sciences 1–2 (2016), 70–83.
[15] Sokhatsky F. M., Lutsenko A. V.: The bunch of varieties of inverse property quasigroups. Visnik DonNU. Ser. A: natural Sciences 1–2 (2018), 56–69.
[16] Sokhatsky F. M., Lutsenko A. V.: Classification of quasigroups according to directions of translations I. Comment. Math. Univ. Carolin. 4 (2020), no. 4, 567–579.