Previous |  Up |  Next

Article

Keywords:
$P$-Bézout ring; 2-Bézout ring; $P$-2-Bézout ring; trivial rings extension; homomorphic image; finite direct product
Summary:
In this paper, we give new characterizations of the $P$-$2$-Bézout property of trivial ring extensions. Also, we investigate the transfer of this property to homomorphic images and to finite direct products. Our results generate original examples which enrich the current literature with new examples of non-$2$-Bézout $P$-$2$-Bézout rings and examples of non-$P$-Bézout $P$-$2$-Bézout rings.
References:
[1] Anderson D. D., Winders M.: Idealization of a module. J. Commut. Algebra 1 (2009), no. 1, 3–56. DOI 10.1216/JCA-2009-1-1-3 | Zbl 1194.13002
[2] Bakkari C.: On $P$-Bézout rings. Int. J. of Algebra 3 (2009), no. 13–16, 669–673.
[3] Bakkari C.: $P$-Bézout property in pullbacks. Int. J. Contemp. Math. Sci. 4 (2009), no. 21–24, 1209–1213.
[4] Bakkari C., Ouarghi K.: On $2$-Bézout rings. Int. J. Algebra 4 (2010), no. 5–8, 241–245.
[5] Costa D. L.: Parameterizing families of non-Noetherian rings. Comm. Algebra 22 (1994), no. 10, 3997–4011. DOI 10.1080/00927879408825061 | Zbl 0814.13010
[6] El Alaoui H., Mouanis H.: On $P$-$2$-Bézout rings. Gulf J. Math. 7 (2019), no. 3, 1–6.
[7] Gillman L., Henriksen M.: Some remarks about elementary divisor rings. Trans. Amer. Math. Soc. 82 (1956), 362–365. DOI 10.1090/S0002-9947-1956-0078979-8
[8] Glaz S.: Commutative Coherent Rings. Lecture Notes in Mathematics, 1371, Springer, Berlin, 1989. DOI 10.1007/BFb0084576 | Zbl 0787.13001
[9] Huckaba J. A.: Commutative Rings with Zero Divisors. Monographs and Textbooks in Pure and Applied Mathematics, 117, Marcel Dekker, New York, 1988. Zbl 0637.13001
[10] Kabbaj S.-E., Mahdou N.: Trivial extensions defined by coherent-like conditions. Comm. Algebra 32 (2004), no. 10, 3937–3953. DOI 10.1081/AGB-200027791 | Zbl 1068.13002
[11] Kaplansky I.: Elementary divisors and modules. Trans. Amer. Math. Soc. 66 (1949), 464–491. DOI 10.1090/S0002-9947-1949-0031470-3
[12] Larsen M. D., Lewis W. J., Shores T. S.: Elementary divisors rings and finitely presented modules. Trans. Amer. Math. Soc. 187 (1974), 231–248. DOI 10.1090/S0002-9947-1974-0335499-1
[13] Mahdou N.: On Costa's conjecture. Comm. Algebra 29 (2001), no. 7, 2775–2785. DOI 10.1081/AGB-4986
[14] Mahdou N.: On $2$-von Neumann regular rings. Comm. Algebra 33 (2005), no. 10, 3489–3496. DOI 10.1080/00927870500242991 | Zbl 1080.13004
[15] Palmér I., Roos J.-E.: Explicit formulae for the global homological dimensions of trivial extensions of rings. J. Algebra 27 (1973), 380–413. DOI 10.1016/0021-8693(73)90113-0
[16] Rotman J. J.: An Introduction to Homological Algebra. Pure and Applied Mathematics, 85, Academic Press, Harcourt Brace Jovanovich, New York, 1979. Zbl 1157.18001
Partner of
EuDML logo