Article
Keywords:
tangency set; distributions; superdensity; integral manifold; Frobenius theorem
Summary:
Let $\Phi _1,\ldots ,\Phi _{k+1}$ (with $k\ge 1$) be vector fields of class $C^k$ in an open set $U\subset ^{N+m}$, let $\mathbb{M}$ be a $N$-dimensional $C^k$ submanifold of $U$ and define \[ \mathbb{T}:=\lbrace z\in \mathbb{M}: \Phi _1(z), \ldots , \Phi _{k+1}(z) \in T_z \mathbb{M}\rbrace \] where $T_z \mathbb{M}$ is the tangent space to $\mathbb{M}$ at $z$. Then we expect the following property, which is obvious in the special case when $z_0$ is an interior point (relative to $\mathbb{M}$) of $\mathbb{T}$: If $z_0\in \mathbb{M}$ is a $(N+k)$-density point (relative to $\mathbb{M}$) of $\mathbb{T}$ then all the iterated Lie brackets of order less or equal to $k$ \[ \Phi _{i_1}(z_0),\, [\Phi _{i_1}, \Phi _{i_2}](z_0), \, [[\Phi _{i_1}, \Phi _{i_2}], \Phi _{i_3}](z_0),\, \ldots \qquad (h, i_h\le k+1) \] belong to $T_{z_0}\mathbb{M}$. Such a property has been proved in [9] for $k=1$ and its proof in the case $k=2$ is the main purpose of the present paper. The following corollary follows at once: Let $\mathbb{D}$ be a $C^2$ distribution of rank $N$ on an open set $U\subset ^{N+m}$ and $\mathbb{M}$ be a $N$-dimensional $C^2$ submanifold of $U$. Moreover let $z_0\in \mathbb{M}$ be a $(N+2)$-density point of the tangency set $\lbrace z\in \mathbb{M}\,\vert \, T_z\mathbb{M}=\mathbb{D}(z)\rbrace $. Then $\mathbb{D}$ must be $2$-involutive at $z_0$, i.e., for every family $\lbrace X_j\rbrace _{j=1}^N$ of class $C^2$ in a neighborhood $V\subset U$ of $z_0$ which generates $\mathbb{D}$ one has \[ X_{i_1} (z_0), [X_{i_1},X_{i_2}](z_0), [[X_{i_1},X_{i_2}],X_{i_3}](z_0)\in T_{z_0}\mathbb{M}\] for all $1\le i_1, i_2, i_3\le N$.
References:
[1] Balogh, Z.M.:
Size of characteristic sets and functions with prescribed gradient. J. Reine Angew. Math. 564 (2003), 63–83.
MR 2021034
[3] Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge Tracts in Mathematics, vol. 108, Cambridge University Press, 1995.
[4] Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on differential geometry. Series On University Mathematics, vol. 1, World Scientific, 1999.
[5] Delladio, S.:
A note on a generalization of the Schwarz theorem about the equality of mixed partial derivatives. Math. Nachr. 290 (11–12) (2017), 1630–1636, DOI: 10.1002/mana.201600195.
DOI 10.1002/mana.201600195 |
MR 3683451
[6] Delladio, S.:
Structure of tangencies to distributions via the implicit function theorem. Rev. Mat. Iberoam. 34 (3) (2018), 1387–1400.
DOI 10.4171/RMI/1028 |
MR 3850291
[7] Delladio, S.:
Structure of prescribed gradient domains for non-integrable vector fields. Ann. Mat. Pura Appl. 198 (3) (2019), 685–691, DOI: 10.1007/s10231-018-0793-1.
DOI 10.1007/s10231-018-0793-1 |
MR 3954388
[8] Delladio, S.:
The tangency of a $C^1$ smooth submanifold with respect to a non-involutive $C^1$ distribution has no superdensity points. Indiana Univ. Math. J. 68 (2) (2019), 393–412.
DOI 10.1512/iumj.2019.68.7549 |
MR 3951069
[9] Delladio, S.:
Good behaviour of Lie bracket at a superdensity point of the tangency set of a submanifold with respect to a rank $2$ distribution. Anal. Math. 47 (1) (2021), 67–80.
DOI 10.1007/s10476-020-0063-5 |
MR 4218579
[10] Derridj, M.:
Sur un théorème de traces. Ann. Inst. Fourier (Grenoble) 22 (2) (1972), 73–83.
DOI 10.5802/aif.413
[11] Federer, H.:
Geometric Measure Theory. Springer-Verlag, 1969.
Zbl 0176.00801
[12] Narasimhan, R.: Analysis on real and complex manifolds. North-Holland Math. Library, North-Holland, 1985.