Previous |  Up |  Next

Article

Title: Oscillatory and non-oscillatory criteria for linear four-dimensional Hamiltonian systems (English)
Author: Grigorian, Gevorg A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 146
Issue: 3
Year: 2021
Pages: 289-304
Summary lang: English
.
Category: math
.
Summary: The Riccati equation method is used to study the oscillatory and non-oscillatory behavior of solutions of linear four-dimensional Hamiltonian systems. One oscillatory and three non-oscillatory criteria are proved. Examples of the obtained results are compared with some well known ones. (English)
Keyword: Riccati equation
Keyword: oscillation
Keyword: non-oscillation
Keyword: conjoined (prepared, preferred) solution
Keyword: Liouville's formula
MSC: 34C10
DOI: 10.21136/MB.2020.0149-19
.
Date available: 2021-08-18T08:23:43Z
Last updated: 2021-08-18
Stable URL: http://hdl.handle.net/10338.dmlcz/149071
.
Reference: [1] Al-Dosary, K. I., Abdullah, H. K., Hussein, D.: Short note on oscillation of matrix Hamiltonian systems.Yokohama Math. J. 50 (2003), 23-30. Zbl 1062.34032, MR 2052143
Reference: [2] Butler, G. J., Erbe, L. H., Mingarelli, A. B.: Riccati techniques and variational principles in oscillation theory for linear systems.Trans. Am. Math. Soc. 303 (1987), 263-282. Zbl 0648.34031, MR 0896022, 10.1090/S0002-9947-1987-0896022-5
Reference: [3] Byers, R., Harris, B. J., Kwong, M. K.: Weighted means and oscillation conditions for second order matrix differential equations.J. Differ. Equations 61 (1986), 164-177. Zbl 0609.34042, MR 0823400, 10.1016/0022-0396(86)90117-8
Reference: [4] Chen, S., Zheng, Z.: Oscillation criteria of Yan type for linear Hamiltonian systems.Comput. Math. Appl. 46 (2003), 855-862. Zbl 1049.34038, MR 2020444, 10.1016/S0898-1221(03)90148-9
Reference: [5] Erbe, L. H., Kong, Q., Ruan, S.: Kamenev type theorems for second order matrix differential systems.Proc. Am. Math. Soc. 117 (1993), 957-962. Zbl 0777.34024, MR 1154244, 10.1090/S0002-9939-1993-1154244-0
Reference: [6] Grigoryan, G. A.: On two comparison tests for second-order linear ordinary differential equations.Differ. Equ. 47 (2011), 1237-1252 translation from Differ. Uravn. 47 2011 1225-1240. Zbl 1244.34051, MR 2918496, 10.1134/S0012266111090023
Reference: [7] Grigoryan, G. A.: Two comparison criteria for scalar Riccati equations with applications.Russ. Math. 56 (2012), 17-30 translation from Izv. Vyssh. Uchebn. Zaved., Mat. 2012 2012 20-35. Zbl 1270.34062, MR 3137099, 10.3103/S1066369X12110023
Reference: [8] Grigoryan, G. A.: On the stability of systems of two first-order linear ordinary differential equations.Differ. Equ. 51 (2015), 283-292 translation from Differ. Uravn. 51 2015 283-292. Zbl 1344.34064, MR 3373201, 10.1134/S0012266115030015
Reference: [9] Grigorian, G. A.: On one oscillatory criterion for the second order linear ordinary differential equations.Opusc. Math. 36 (2016), 589-601. Zbl 1360.34075, MR 3520801, 10.7494/OpMath.2016.36.5.589
Reference: [10] Grigorian, G. A.: Oscillatory criteria for the systems of two first-order linear differential equations.Rocky Mt. J. Math. 47 (2017), 1497-1524. Zbl 1378.34052, MR 3705762, 10.1216/RMJ-2017-47-5-1497
Reference: [11] Grigorian, G. A.: Oscillatory and non oscillatory criteria for the systems of two linear first order two by two dimensional matrix ordinary differential equations.Arch. Math., Brno 54 (2018), 189-203. Zbl 06997350, MR 3887360, 10.5817/AM2018-4-189
Reference: [12] Kumary, I. S., Umamaheswaram, S.: Oscillation criteria for linear matrix Hamiltonian systems.J. Differ. Equations 165 (2000), 174-198. Zbl 0970.34025, MR 1771793, 10.1006/jdeq.1999.3746
Reference: [13] Li, L., Meng, F., Zheng, Z.: Oscillation results related to integral averaging technique for linear Hamiltonian systems.Dyn. Syst. Appl. 18 (2009), 725-736. Zbl 1208.34040, MR 2562259
Reference: [14] Meng, F., Mingarelli, A. B.: Oscillation of linear Hamiltonian systems.Proc. Am. Math. Soc. 131 (2003), 897-904. Zbl 1008.37032, MR 1937428, 10.1090/S0002-9939-02-06614-5
Reference: [15] Mingarelli, A. B.: On a conjecture for oscillation of second order ordinary differential systems.Proc. Am. Math. Soc. 82 (1981), 593-598. Zbl 0487.34030, MR 0614884, 10.1090/S0002-9939-1981-0614884-3
Reference: [16] Sun, Y. G.: New oscillation criteria for linear matrix Hamiltonian systems.J. Math. Anal. Appl. 279 (2003), 651-658. Zbl 1032.34032, MR 1974052, 10.1016/S0022-247X(03)00053-2
Reference: [17] Wang, Q.: Oscillation criteria for second-order matrix differential systems.Arch. Math. 76 (2001), 385-390. Zbl 0989.34024, MR 1824258, 10.1007/PL00000448
Reference: [18] Yang, Q., Mathsen, R., Zhu, S.: Oscillation theorems for self-adjoint matrix Hamiltonian systems.J. Differ. Equations 190 (2003), 306-329. Zbl 1032.34033, MR 1970965, 10.1016/S0022-0396(02)00172-9
Reference: [19] Zheng, Z.: Linear transformation and oscillation criteria for Hamiltonian systems.J. Math. Anal. Appl. 332 (2007), 236-245. Zbl 1124.34021, MR 2319657, 10.1016/j.jmaa.2006.10.034
Reference: [20] Zheng, Z., Zhu, S.: Hartman type oscillation criteria for linear matrix Hamiltonian systems.Dyn. Syst. Appl. 17 (2008), 85-96. Zbl 1203.34059, MR 2433892
.

Files

Files Size Format View
MathBohem_146-2021-3_5.pdf 252.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo