Previous |  Up |  Next

Article

Keywords:
Witten deformation; local index density; de Rham complex; Dolbeault complex; equivariant index density
Summary:
A perturbation of the de Rham complex was introduced by Witten for an exact 1-form $\Theta $ and later extended by Novikov for a closed 1-form on a Riemannian manifold $M$. We use invariance theory to show that the perturbed index density is independent of $\Theta $; this result was established previously by J. A. Álvarez López, Y. A. Kordyukov and E. Leichtnam (2020) using other methods. We also show the higher order heat trace asymptotics of the perturbed de Rham complex exhibit nontrivial dependence on $\Theta $. We establish similar results for manifolds with boundary imposing suitable boundary conditions and give an equivariant version for the local Lefschetz trace density. In the setting of the Dolbeault complex, one requires $\Theta $ to be a $\bar \partial $ closed $1$-form to define a local index density; we show in contrast to the de Rham complex, that this exhibits a nontrivial dependence on $\Theta $ even in the setting of Riemann surfaces.
References:
[1] López, J. A. Álvarez, Kordyukov, Y. A., Leichtnam, E.: A trace formula for foliated flow (working paper). Summer Conference on Topology and Its Applications 20 University of Dayton, Dayton (2017), 72 pages.
[2] Atiyah, M., Bott, R., Patodi, V. K.: On the heat equation and the index theorem. Invent. Math. 13 (1973), 279-330 errata ibid. 28 1975 277-280. DOI 10.1007/BF01425417 | MR 650828 | Zbl 0257.58008
[3] Atiyah, M., Patodi, V. K., Singer, I. M.: Spectral asymmetry and Riemannian geometry. Bull. Lond. Math. Soc. 5 (1973), 229-234. DOI 10.1112/blms/5.2.229 | MR 331443 | Zbl 0268.58010
[4] Berline, N., Getzler, E., Vergne, M.: Heat Kernels and Dirac Operators. Grundlehren Text Editions. Springer, Berlin (2004). DOI 10.1007/978-3-642-58088-8 | MR 2273508 | Zbl 1037.58015
[5] Bismut, J.-M., Zhang, W.: An Extension of a Theorem by Cheeger and Müller. Astérisque 205. Société Mathématique de France, Paris (1992). MR 1185803 | Zbl 0781.58039
[6] Braverman, M., Farber, M.: Novikov type inequalities for differential forms with nonisolated zeros. Math. Proc. Camb. Philos. Soc. 122 (1997), 357-375. DOI 10.1017/S0305004197001734 | MR 1458239 | Zbl 0894.58012
[7] Burghelea, D., Haller, S.: On the topology and analysis of a closed one form. I. (Novikov's theory revisited). Essays on Geometry and Related Topics. Volume 1 Monographs of L'Enseignement Mathématique 38. Enseignement Mathématique, Geneva (2001), 133-175. MR 1929325 | Zbl 1017.57013
[8] Burghelea, D., Haller, S.: Dynamics, Laplace transform and spectral geometry. J. Topol. 1 (2008), 115-151. DOI 10.1112/jtopol/jtm005 | MR 2365654 | Zbl 1156.57022
[9] Chern, S.-S.: A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds. Ann. Math. (2) 45 (1944), 741-752. DOI 10.2307/1969302 | MR 11027 | Zbl 0060.38103
[10] Gilkey, P. B.: Curvature and the eigenvalues of the Dolbeault complex for Kaehler manifolds. Adv. Math. 11 (1973), 311-325. DOI 10.1016/0001-8708(73)90014-5 | MR 334290 | Zbl 0285.53044
[11] Gilkey, P. B.: Curvature and the eigenvalues of the Laplacian for elliptic complexes. Adv. Math. 10 (1973), 344-382. DOI 10.1016/0001-8708(73)90119-9 | MR 324731 | Zbl 0259.58010
[12] Gilkey, P. B.: The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary. Adv. Math. 15 (1975), 334-360. DOI 10.1016/0001-8708(75)90141-3 | MR 368084 | Zbl 0306.53042
[13] Gilkey, P. B.: Lefschetz fixed point formulas and the heat equation. Partial Differential Equations and Geometry Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York (1979), 91-147. MR 535591 | Zbl 0405.58044
[14] Gilkey, P. B.: Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995). MR 1396308 | Zbl 0856.58001
[15] Gilkey, P. B.: Asymptotic Formulae in Spectral Geometry. Studies in Advanced Mathematics. Chapman & Hall/CRC, Boca Raton (2004). DOI 10.1201/9780203490464 | MR 2040963 | Zbl 1080.58023
[16] Gilkey, P. B., Nikčević, S., Pohjanpelto, J.: The local index formula for a Hermitian manifold. Pac. J. Math. 180 (1997), 51-56. DOI 10.2140/pjm.1997.180.51 | MR 1474893 | Zbl 0885.58091
[17] Gilkey, P. B., Park, J. H., Sekigawa, K.: Universal curvature identities. Differ. Geom. Appl. 29 (2011), 770-778. DOI 10.1016/j.difgeo.2011.08.005 | MR 2846274 | Zbl 1259.53013
[18] Greiner, P.: An asymptotic expansion for the heat equation. Arch. Ration. Mech. Anal. 41 (1971), 163-218. DOI 10.1007/BF00276190 | MR 331441 | Zbl 0238.35038
[19] Harvey, F. R., Minervini, G.: Morse Novikov theory and cohomology with forward supports. Math. Ann. 335 (2006), 787-818. DOI 10.1007/s00208-006-0765-4 | MR 2232017 | Zbl 1109.57019
[20] Helffer, B., Sjöstrand, J.: Puits multiples en mécanique semi-classique IV: Édude du complexe de Witten. Commun. Partial Differ. Equations 10 (1985), 245-340 French. DOI 10.1080/03605308508820379 | MR 780068 | Zbl 0597.35024
[21] Hirzebruch, F.: Topological Methods in Algebraic Geometry. Die Grundlehren der Mathematischen Wissenschaften 131. Springer, Berlin (1966). DOI 10.1007/978-3-642-62018-8 | MR 0202713 | Zbl 0138.42001
[22] Lee, S.-C.: A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis. Brandeis University, Waltham (1976). MR 2625269
[23] H. P. McKean, Jr., I. M. Singer: Curvature and the eigenvalues of the Laplacian. J. Differ. Geom. 1 (1967), 43-69. DOI 10.4310/jdg/1214427880 | MR 217739 | Zbl 0198.44301
[24] Minervini, G.: A current approach to Morse and Novikov theories. Rend. Mat. Appl., VII. Ser. 36 (2015), 95-195. MR 3533253 | Zbl 1361.58007
[25] Novikov, S. P.: Multivalued functions and functionals: An analogue of the Morse theory. Sov. Math., Dokl. 24 (1981), 222-226. MR 630459 | Zbl 0505.58011
[26] Novikov, S. P.: The Hamiltonian formalism and a many-valued analogue of Morse theory. Russ. Math. Surv. 37 (1982), 1-56. DOI 10.1070/RM1982v037n05ABEH004020 | MR 676612 | Zbl 0571.58011
[27] Novikov, S. P.: Bloch homology. Critical points of functions and closed 1-forms. Sov. Math., Dokl. 33 (1986), 551-555. MR 838822 | Zbl 0642.58016
[28] Patodi, V. K.: An analytic proof of the Riemann-Roch-Hirzebruch theorem for Kaehler manifolds. J. Differ. Geom. 5 (1971), 251-283. DOI 10.4310/jdg/1214429991 | MR 290318 | Zbl 0219.53054
[29] Patodi, V. K.: Curvature and the eigenforms of the Laplace Operator. J. Differ. Geom. 5 (1971), 233-249. DOI 10.4310/jdg/1214429791 | MR 292114 | Zbl 0211.53901
[30] Pazhitnov, A. V.: An analytic proof of the real part of Novikov's inequalities. Sov. Math., Dokl. 35 (1987), 456-457. MR 891557 | Zbl 0647.57025
[31] Seeley, R. T.: Complex powers of an elliptic operator. Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1968), 288-307. DOI 10.1090/pspum/010 | MR 0237943 | Zbl 0159.15504
[32] Seeley, R. T.: The resolvent of an elliptic boundary value problem. Am. J. Math. 91 (1969), 889-920. DOI 10.2307/2373309 | MR 265764 | Zbl 0191.11801
[33] Weyl, H.: The Classical Groups: Their Invariants and Representations. Princeton Mathematical Series 1. Princeton University Press, Princeton (1946). DOI 10.1515/9781400883905 | MR 1488158 | Zbl 1024.20502
[34] Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17 (1982), 661-692. DOI 10.4310/jdg/1214437492 | MR 683171 | Zbl 0499.53056
Partner of
EuDML logo