[1] López, J. A. Álvarez, Kordyukov, Y. A., Leichtnam, E.: A trace formula for foliated flow (working paper). Summer Conference on Topology and Its Applications 20 University of Dayton, Dayton (2017), 72 pages.
[5] Bismut, J.-M., Zhang, W.:
An Extension of a Theorem by Cheeger and Müller. Astérisque 205. Société Mathématique de France, Paris (1992).
MR 1185803 |
Zbl 0781.58039
[7] Burghelea, D., Haller, S.:
On the topology and analysis of a closed one form. I. (Novikov's theory revisited). Essays on Geometry and Related Topics. Volume 1 Monographs of L'Enseignement Mathématique 38. Enseignement Mathématique, Geneva (2001), 133-175.
MR 1929325 |
Zbl 1017.57013
[13] Gilkey, P. B.:
Lefschetz fixed point formulas and the heat equation. Partial Differential Equations and Geometry Lecture Notes in Pure and Applied Mathematics 48. Marcel Dekker, New York (1979), 91-147.
MR 535591 |
Zbl 0405.58044
[14] Gilkey, P. B.:
Invariance Theory, the Heat Equation and the Atiyah-Singer Index Theorem. Studies in Advanced Mathematics. CRC Press, Boca Raton (1995).
MR 1396308 |
Zbl 0856.58001
[22] Lee, S.-C.:
A Lefschetz Formula for Higher Dimensional Fixed Point Sets: Ph.D. Thesis. Brandeis University, Waltham (1976).
MR 2625269
[24] Minervini, G.:
A current approach to Morse and Novikov theories. Rend. Mat. Appl., VII. Ser. 36 (2015), 95-195.
MR 3533253 |
Zbl 1361.58007
[25] Novikov, S. P.:
Multivalued functions and functionals: An analogue of the Morse theory. Sov. Math., Dokl. 24 (1981), 222-226.
MR 630459 |
Zbl 0505.58011
[27] Novikov, S. P.:
Bloch homology. Critical points of functions and closed 1-forms. Sov. Math., Dokl. 33 (1986), 551-555.
MR 838822 |
Zbl 0642.58016
[30] Pazhitnov, A. V.:
An analytic proof of the real part of Novikov's inequalities. Sov. Math., Dokl. 35 (1987), 456-457.
MR 891557 |
Zbl 0647.57025
[31] Seeley, R. T.:
Complex powers of an elliptic operator. Singular Integrals Proceedings of Symposia in Pure Mathematics 10. American Mathematical Society, Providence (1968), 288-307.
DOI 10.1090/pspum/010 |
MR 0237943 |
Zbl 0159.15504