[1] Ash, E.:
Real Analysis and Probability. Academic Press, 1972.
MR 0435320
[2] Cavazos-Cadena, R., Hernández-Hernández, D.:
Nash equilibria in a class of Markov stopping games. Kybernetika 48 (2012), 1027-1044.
MR 3086867
[3] Cavazos-Cadena, R., Montes-de-Oca, R.:
Nearly optimal policies in risk-sensitive positive dynamic programming on discrete spaces. Math. Methods Oper. Res. 27 (2000), 137-167.
DOI |
MR 1782381
[4] Filar, J. A., Vrieze, O. J.:
Competitive Markov Decision Processes. Springer Verlag, Berlin 1996.
DOI |
MR 1418636
[5] Granas, A., Dugundji, J.:
Fixed Point Theory. Springer-Verlag, New York 2003.
MR 1987179
[6] Hinderer, K.:
Foundations of Non-stationary Dynamic Programming with Discrete Time Parameter. Springer-Verlag, Berlin 1970.
DOI |
MR 0267890
[7] Howard, R. A., Matheson, J.:
Risk-sensitive Markov decision processes. Management Sci. 23 (1972), 356-369.
DOI |
MR 0292497
[8] Kolokoltsov, V. N., Malafayev, O. A.:
Understanding Game Theory. World Scientific, Singapore 2010.
DOI |
MR 2666863
[9] Nash, J.:
Equilibrium points in n-person games. Proc. National Acad. Sci. United States of America 36 (1950), 48-49.
DOI |
MR 0031701
[10] Puterman, M. L.:
Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley, New York 1994.
DOI |
MR 1270015
[11] Raghavan, T. E. S., Tijs, S. H., J., O., Vrieze:
On stochastic games with additive reward and transition structure. J. Optim. Theory Appl. 47 (1985), 451-464.
DOI |
MR 0818872
[12] Ross, S.:
Introduction to Probability Models. Ninth edition. Elsevier 2007.
MR 1247962
[13] Shapley, L. S.:
Stochastic games. Proc. National Academy Sciences of United States of America 39 (1953), 1095-1100.
DOI |
MR 0061807 |
Zbl 1180.91042
[15] Sladký, K., Martínez-Cortés, V. M.: Risk-sensitive optimality in Markov games. In: Proc. 35th International Conference Mathematical Methods in Economics 2017 (P. Pražák, ed.). Univ. Hradec Králové 2017, pp. 684-689.
[16] Thomas, L. C.:
Connectedness conditions used in finite state Markov decision processes. J. Math. Anal. Appl. 68 (1979), 548-556.
DOI |
MR 0533512
[17] Thomas, L. C.:
Connectedness conditions for denumerable state Markov decision processes. In: Recent Developments in Markov Decision Processes (R. Hartley, L.|,C. Thomas and D. J. White, eds.), Academic Press, New York 1980, pp. 181-204.
MR 0611528
[18] Thuijsman, F.:
Optimality and Equilibria in Stochastic Games. Mathematical Centre Tracts, Amsterdam 1992.
MR 1171220
[19] Wal, J. Van der:
Discounted Markov games: successive approximations and stopping times. Int. J. Game Theory 6 (1977), 11-22.
DOI |
MR 0456797
[20] Wal, J. Van der:
Stochastic Dynamic Programming. Mathematical Centre Tracts, Amsterdam 1981.
MR 0633156
[21] Vrieze, O. J.:
Stochastic Games with Finite State and Action Spaces. Mathematical Centre Tracts, Amsterdam 1987.
MR 0886482
[22] Zachrisson, L.:
Markov games. In: Advances in Game Theory (M. Dresher, L. S. Shapley and A. W. Tucker, eds.), Princeston University Press 1964.
DOI |
MR 0170729 |
Zbl 0126.36507
[23] Zijm, W. H. M.:
Nonnegative Matrices in Dynamic Programming. Mathematisch Centrum, Amsterdam 1983.
MR 0723868