[1] Belger, M., Kowalski, O.:
Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point. Math. Nachr. 168 (1994), no. 1, 209–225.
MR 1282640
[2] Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.:
Lorentz manifolds modeled on a Lorentz symmetric space. J. Geom. Phys. 7 (1990), 571–581.
DOI 10.1016/0393-0440(90)90007-P |
MR 1131913
[6] García-Río, E., Gilkey, P., Nikčević, S.:
Homothety curvature homogeneity and homothety homogeneity. Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170.
DOI 10.1007/s10455-015-9462-4 |
MR 3376877
[7] Gilkey, P.:
Relating algebraic properties of the curvature tensor to geometry. Novi Sad J. Math. 29 (1999), no. 3, 109–119.
MR 1770990
[8] Gilkey, P.:
Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific, 2001.
MR 1877530
[9] Gilkey, P.:
The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. Imperial College Press, 2007.
MR 2351705 |
Zbl 1128.53041
[11] Klinger, R.:
A basis that reduces to zero as many curvature components as possible. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248.
MR 1138290
[12] Kowalski, O., Prüfer, F.:
Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. (Brno) 30 (1994), no. 1, 45–57.
MR 1282112
[15] Lee, J.:
Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag New York, Inc., 1997.
MR 1468735
[17] Tricerri, F., Vanhecke, L.:
Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible. C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235.
MR 0832051
[18] Tsankov, Y.:
A characterization of $n$-dimensional hypersurfaces in $\mathbb{R}^{n+1}$ with commuting curvature operators. Banach Center Publ. 69 (2005), 205–209.
DOI 10.4064/bc69-0-16 |
MR 2189568