Previous |  Up |  Next

Article

Keywords:
curvature model; curvature homogeneous; homothethy curvature homogeneous
Summary:
We generalize a previous result concerning the geometric realizability of model spaces as curvature homogeneous spaces, and investigate applications of this approach. We find algebraic restrictions to realize a model space as a curvature homogeneous space up to any order, and study the implications of geometrically realizing a model space as a locally symmetric space. We also present algebraic restrictions to realize a curvature model as a homothety curvature homogeneous space up to even orders, and demonstrate that for certain model spaces and realizations, homothety curvature homogeneity implies curvature homogeneity.
References:
[1] Belger, M., Kowalski, O.: Riemannian Metrics with the Prescribed Curvature Tensor and all Its Covariant Derivatives at One Point. Math. Nachr. 168 (1994), no. 1, 209–225. MR 1282640
[2] Cahen, M., Leroy, J., Parker, M., Tricerri, F., Vanhecke, L.: Lorentz manifolds modeled on a Lorentz symmetric space. J. Geom. Phys. 7 (1990), 571–581. DOI 10.1016/0393-0440(90)90007-P | MR 1131913
[3] Calvaruso, G.: Homogeneous structures on three-dimensional Lorentzian manifolds. J. Geom. Phys. 57 (2007), 1279–1291. DOI 10.1016/j.geomphys.2006.10.005 | MR 2287304 | Zbl 1112.53051
[4] Dunn, C., Luna, A., Sbiti, S.: A common generalization of curvature homogeneity theories. J. Geom. 111 (1) (2020), 17 pp. DOI 10.1007/s00022-020-0528-5 | MR 4076679
[5] Dunn, C., McDonald, C.: Singer invariants and various types of curvature homogeneity. Ann. Global Anal. Geom. 45 (2014), no. 4, 303–317. DOI 10.1007/s10455-013-9403-z | MR 3180951
[6] García-Río, E., Gilkey, P., Nikčević, S.: Homothety curvature homogeneity and homothety homogeneity. Ann. Global Anal. Geom. 48 (2015), no. 2, 149–170. DOI 10.1007/s10455-015-9462-4 | MR 3376877
[7] Gilkey, P.: Relating algebraic properties of the curvature tensor to geometry. Novi Sad J. Math. 29 (1999), no. 3, 109–119. MR 1770990
[8] Gilkey, P.: Geometric Properties of Natural Operators Defined by the Riemann Curvature Tensor. World Scientific, 2001. MR 1877530
[9] Gilkey, P.: The Geometry of Curvature Homogeneous Pseudo-Riemannian Manifolds. Imperial College Press, 2007. MR 2351705 | Zbl 1128.53041
[10] Gray, A.: Einstein-like manifolds which are not Einstein. Geom. Dedicata 7 (1978), 259–280. DOI:  http://dx.doi.org/https://doi.org/10.1007/BF00151525 DOI 10.1007/BF00151525 | MR 0505561 | Zbl 0378.53018
[11] Klinger, R.: A basis that reduces to zero as many curvature components as possible. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 61 (1991), 243–248. MR 1138290
[12] Kowalski, O., Prüfer, F.: Curvature tensors in dimension four which do not belong to any curvature homogeneous space. Arch. Math. (Brno) 30 (1994), no. 1, 45–57. MR 1282112
[13] Kowalski, O., Vanžurová, A.: On curvature homogeneous spaces of type (1,3). Math. Nachr. 284 (2011), no. 17–18, 2127–2132. DOI 10.1002/mana.201000008 | MR 2859752
[14] Kowalski, O., Vanžurová, A.: On a generalization of curvature homogeneous spaces. Results Math. 63 (2013), 129–134. DOI 10.1007/s00025-011-0177-y | MR 3009676
[15] Lee, J.: Riemannian Manifolds: An Introduction to Curvature. Springer-Verlag New York, Inc., 1997. MR 1468735
[16] Singer, I.M.: Infinitesimally homogeneous spaces. Commun. Pure Appl. Math 13 (1960), 685–697. DOI 10.1002/cpa.3160130408 | MR 0131248 | Zbl 0171.42503
[17] Tricerri, F., Vanhecke, L.: Variétés Riemanniennes dont le tenseur de courbure est celui d’un espace symétrique Riemannien irréductible. C.R. Acad. Sci., Paris, Sér I (1986), no. 302, 233–235. MR 0832051
[18] Tsankov, Y.: A characterization of $n$-dimensional hypersurfaces in $\mathbb{R}^{n+1}$ with commuting curvature operators. Banach Center Publ. 69 (2005), 205–209. DOI 10.4064/bc69-0-16 | MR 2189568
Partner of
EuDML logo