Previous |  Up |  Next

Article

Keywords:
discrete Morrey space; multiplication operator; compactness
Summary:
We consider discrete versions of Morrey spaces introduced by Gunawan et al. in papers published in 2018 and 2019. We prove continuity and compactness of multiplication operators and commutators acting on them.
References:
[1] Avsyankin O. G.: On the compactness of convolution-type operators in Morrey spaces. Mat. Zametki 102 (2017), no. 4, 483–489; translation in Math. Notes 102 (2017), no. 3–4, 437–443. MR 3706865
[2] Gunawan H., Kikianty E., Schwanke C.: Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291 (2018), no. 8–9, 1283–1296. DOI 10.1002/mana.201700054 | MR 3817318
[3] Gunawan H., Schwanke C.: The Hardy–Littlewood maximal operator on discrete Morrey spaces. Mediterr. J. Math. 16 (2019), no. 1, Paper No. 24, 12 pages. DOI 10.1007/s00009-018-1277-7 | MR 3911140
[4] Hanche-Olsen H., Holden H.: The Kolmogorov–Riesz compactness theorem. Expo. Math. 28 (2010), no. 4, 385–394. DOI 10.1016/j.exmath.2010.03.001 | MR 2734454
[5] Magyar A., Stein E. M., Wainger S.: Discrete analogues in harmonic analysis: spherical averages. Ann. of Math. (2) 155 (2002), no. 1, 189–208. DOI 10.2307/3062154 | MR 1888798
[6] Morrey C. B., Jr.: On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc. 43 (1938), no. 1, 126–166. DOI 10.1090/S0002-9947-1938-1501936-8 | MR 1501936
[7] Stein E. M., Wainger S.: Discrete analogues of singular Radon transforms. Bull. Amer. Math. Soc. (N.S) 23 (1990), no. 2, 537–544. DOI 10.1090/S0273-0979-1990-15973-7 | MR 1056560
[8] Stein E. M., Wainger S.: Discrete analogues in harmonic analysis I: $l^{2}$ estimates for singular Radon transforms. Amer. J. Math. 21 (1999), no. 6, 1291–1336. DOI 10.1353/ajm.1999.0046 | MR 1719802
[9] Stein E. M., Wainger S.: Discrete analogues in harmonic analysis II: Fractional integration. J. Anal. Math. 80 (2000), 335–355. DOI 10.1007/BF02791541 | MR 1771530
Partner of
EuDML logo