[1] Avsyankin O. G.:
On the compactness of convolution-type operators in Morrey spaces. Mat. Zametki 102 (2017), no. 4, 483–489; translation in Math. Notes 102 (2017), no. 3–4, 437–443.
MR 3706865
[2] Gunawan H., Kikianty E., Schwanke C.:
Discrete Morrey spaces and their inclusion properties. Math. Nachr. 291 (2018), no. 8–9, 1283–1296.
DOI 10.1002/mana.201700054 |
MR 3817318
[3] Gunawan H., Schwanke C.:
The Hardy–Littlewood maximal operator on discrete Morrey spaces. Mediterr. J. Math. 16 (2019), no. 1, Paper No. 24, 12 pages.
DOI 10.1007/s00009-018-1277-7 |
MR 3911140
[5] Magyar A., Stein E. M., Wainger S.:
Discrete analogues in harmonic analysis: spherical averages. Ann. of Math. (2) 155 (2002), no. 1, 189–208.
DOI 10.2307/3062154 |
MR 1888798
[8] Stein E. M., Wainger S.:
Discrete analogues in harmonic analysis I: $l^{2}$ estimates for singular Radon transforms. Amer. J. Math. 21 (1999), no. 6, 1291–1336.
DOI 10.1353/ajm.1999.0046 |
MR 1719802
[9] Stein E. M., Wainger S.:
Discrete analogues in harmonic analysis II: Fractional integration. J. Anal. Math. 80 (2000), 335–355.
DOI 10.1007/BF02791541 |
MR 1771530