Previous |  Up |  Next

Article

Keywords:
Continuous logic; metric groups; unitary representations; amenable groups.
Summary:
We describe how properties of metric groups and of unitary representations of metric groups can be presented in continuous logic. In particular we find $L_{\omega _1 \omega }$-axiomatization of amenability. We also show that in the case of locally compact groups some uniform version of the negation of Kazhdan's property (T) can be viewed as a union of first-order axiomatizable classes. We will see when these properties are preserved under taking elementary substructures.
References:
[1] Bekka, B., Harpe, P. de la, Valette, P.: Kazhdan's Property (T). New Mathematical Monographs, 11, Cambridge University Press, Cambridge, 2008, MR 2415834
[2] Yaacov, I. Ben, Berenstein, A., Henson, W., Usvyatsov, A.: Model theory for metric structures. in: Model theory with Applications to Algebra and Analysis, v.2, Z. Chatzidakis, H.D. Macpherson, A. Pillay, A. Wilkie (eds.), London Math. Soc. Lecture Notes, v. 350, Cambridge University Press, 2008, 315 - 427, MR 2436146
[3] Yaacov, I. Ben, Iovino, J.: Model theoretic forcing in analysis. Annals of Pure and Appl. Logic, 158, 2009, 163 - 174, DOI 10.1016/j.apal.2007.10.011 | MR 2500090
[4] Bunina, E.I., Mikhalev, A.V.: Elementary properties of linear groups and related problems. J. Math. Sci. (N. Y.), 123, 2004, 3921 - 3985, DOI 10.1023/B:JOTH.0000036655.73484.a8 | MR 2096270
[5] Doucha, M.: Generic norms and metrics on countable abelian groups. Monatsh. Mathematik, 189, 2020, 51 - 74, DOI 10.1007/s00605-019-01277-7 | MR 3948286
[6] Ershov, M., Jaikin-Zapirain, A.: Property (T) for noncommutative universal lattices. Invent. Math., 179, 2010, 303 - 347, DOI 10.1007/s00222-009-0218-2 | MR 2570119
[7] Goldbring, I.: Enforceable operator algebras. Journal of the Institute of Mathematics of Jussieu, 2019, 1 - 33, MR 4205777
[8] Goldbring, I.: On the nonexistence of Folner sets. arXiv:1901.02445, 2019,
[9] Grigorchuk, R., Harpe, P. de la: Amenability and ergodic properties of topological groups: from Bogolyubov onwards. in: Groups, graphs and random walks, London Math. Soc. Lecture Note Ser., 436, Cambridge Univ. Press, Cambridge, 2017, 215 - 249, MR 3644011
[10] Hernandes, S., Hofmann, K.H., Morris, S.A.: The weights of closed subgroups of a locally compact subgroup. J. Group Theory, 15, 2012, 613 - 630, MR 2982605
[11] Ivanov, A.: Locally compact groups which are separably categorical structures. Arch. Math. Logic, 56, 2017, 67 - 78, DOI 10.1007/s00153-016-0516-5 | MR 3598797
[12] Ivanov, A.: Actions of metric groups and continuous logic. arXiv:1706.04157, 2017, MR 4251310
[13] Pestov, V.: Amenability versus property (T) for non locally compact topological groups. Trans. Amer. Math. Soc., 370, 2018, 7417 - 7436, DOI 10.1090/tran/7256 | MR 3841853
[14] Schneider, F.M., Thom, A.: On Folner sets in topological groups. Compositio Mathematica, 154, 2018, 1333 - 1361, DOI 10.1112/S0010437X1800708X | MR 3809992
Partner of
EuDML logo