[1] Agoh, T.:
On Bernoulli numbers, I. C. R. Math. Rep. Acad. Sci. Canada, 10, 1988, 7-12,
MR 0925293
[2] Agoh, T.:
Convolution identities for Bernoulli and Genocchi polynomials. Electron. J. Comb., 21, 1, 2014, 1-14,
MR 3192396
[7] Belavin, A.A., Drinfel'd, V.G.:
Solutions of the classical Yang-Baxter equation for simple Lie algebras. Funct. Anal. Appl., 16, 3, 1982, 159-180,
DOI 10.1007/BF01081585 |
MR 0674005
[10] Connes, A., Kreimer, D.:
Renormalization in quantum field theory and the Riemann--Hilbert problem I: The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys., 210, 1, 2000, 249-273, Springer,
DOI 10.1007/s002200050779 |
MR 1748177
[12] Ebrahimi-Fard, K.: Rota-Baxter algebras and the Hopf algebra of renormalization. 2006, Ph.D. Thesis, University of Bonn.
[13] Ebrahimi-Fard, K., Guo, L.:
Multiple zeta values and Rota-Baxter algebras. Integers, 8, 2--A4, 2008, 1-18,
MR 2438289
[15] Graham, R.L., Knuth, D.E., Patashnik, O.:
Concrete Mathematics: a foundation for computer science. 1994, Addison-Wesley Professional, Reading (MA, USA), Second ed.
MR 1397498
[16] Gubarev, V.: Rota-Baxter operators on unital algebras. Mosc. Math. J., (Accepted) Preprint arXiv:1805.00723v3.
[17] Gubarev, V., Kolesnikov, P.:
Embedding of dendriform algebras into Rota-Baxter algebras. Cent. Eur. J. Math. -- Open Mathematics, 11, 2, 2013, 226-245, Versita,
MR 3000640
[18] Guo, L.:
An introduction to Rota-Baxter algebra. 2012, International Press Somerville, Higher Education Press, Beijing, Surveys of Modern Mathematics, vol. 4..
MR 3025028
[20] Kim, D.S., Kim, T.:
Bernoulli basis and the product of several Bernoulli polynomials. Int. J. Math. Math. Sci., 2012, 2012, 12 pp, Hindawi,
MR 2969368
[21] Kim, D.S., Kim, T., Lee, S.-H., Kim, Y.-H.:
Some identities for the product of two Bernoulli and Euler polynomials. Adv. Differ. Equ., 2012, 95, 2012, 14 pp, Springer,
MR 2948735
[25] Miller, J.B.:
Some properties of Baxter operators. Acta Math. Hung., 17, 3-4, 1966, 387-400, Akadémiai Kiadó, co-published with Springer Science+ Business Media BV
MR 0205074
[26] Newsome, N.J., Nogin, M.S., Sabuwala, A.H.:
A proof of symmetry of the power sum polynomials using a novel Bernoulli number identity. J. Integer Seq., 20, 2, 2017, 10 pp,
MR 3680201
[27] Nielsen, N.: Traité élémentaire des nombres de Bernoulli. 1923, Gauthier-Villars,
[32] Sury, B., Wang, T., Zhao, F.-Z.:
Identities involving reciprocals of binomial coefficients. J. Integer Seq., 7, 2, 2004, 12 pp,
MR 2084860
[34] Zagier, D.:
Curious and exotic identities for Bernoulli numbers (Appendix). Bernoulli numbers and zeta functions, 2014, 239-262, Springer,
MR 3307736
[35] Zhao, J.:
Multiple zeta functions, multiple polylogarithms and their special values. 2016, World Scientific, Series on Number Theory and Its Applications, vol. 12..
MR 3469645