Previous |  Up |  Next

Article

Keywords:
(left and right) Engel element; commutator; Engel BCI-algebra
Summary:
We introduce Engel elements in a BCI-algebra by using left and right normed commutators, and some properties of these elements are studied. The notion of $n$-Engel BCI-algebra as a natural generalization of commutative BCI-algebras is introduced, and we discuss Engel BCI-algebra, which is defined by left and right normed commutators. In particular, we prove that any nilpotent BCI-algebra of type $2$ is an Engel BCI-algebra, but solvable BCI-algebras are not Engel, generally. Also, it is proved that $1$-Engel BCI-algebras are exactly the commutative BCI-algebras.
References:
[1] Abdollahi, A.: Engel graph associated with a group. J. Algebra 318 (2007), 680-691. DOI 10.1016/j.jalgebra.2007.09.007 | MR 2371966 | Zbl 1136.20034
[2] Abdollahi, A.: Engel elements in groups. Groups St. Andrews 2009 in Bath. Vol. I. London Mathematical Society Lecture Note Series 387. Cambridge University Press, Cambridge (2011), 94-117 C. M. Campbell, et al. DOI 10.1017/CBO9780511842467.005 | MR 2858851 | Zbl 1235.20039
[3] Dudek, W. A.: On group-like BCI-algebras. Demonstr. Math. 21 (1988), 369-376. DOI 10.1515/dema-1988-0207 | MR 0981689 | Zbl 0655.06011
[4] Dudek, W. A.: Finite BCK-algebras are solvable. Commun. Korean Math. Soc. 31 (2016), 261-262. DOI 10.4134/CKMS.2016.31.2.261 | MR 3498234 | Zbl 1339.06022
[5] Huang, Y.: BCI-Algebras. Science Press, Beijing (2006).
[6] Iséki, K.: An algebra related with a propositional calculus. Proc. Japan Acad. 42 (1966), 26-29. DOI 10.3792/pja/1195522171 | MR 0202571 | Zbl 0207.29304
[7] Iséki, K.: On BCI-algebras. Math. Semin. Notes, Kobe Univ. 8 (1980), 125-130. MR 0590171 | Zbl 0434.03049
[8] Lei, T., Xi, C.: $p$-radical in BCI-algebras. Math. Jap. 30 (1985), 511-517. MR 0812002 | Zbl 0594.03047
[9] Najafi, A.: Pseudo-commutators in BCK-algebras. Pure Math. Sci. 2 (2013), 29-32. DOI 10.12988/pms.2013.13004 | Zbl 1305.06023
[10] Najafi, A., Saeid, A. Borumand: Solvable BCK-algebras. Çankaya Univ. J. Sci. Eng. 11 (2014), 19-28.
[11] Najafi, A., Saeid, A. Borumand, Eslami, E.: Commutators in BCI-algebras. J. Intell. Fuzzy Syst. 31 (2016), 357-366. DOI 10.3233/IFS-162148 | Zbl 1367.06009
[12] Najafi, A., Saeid, A. Borumand, Eslami, E.: Centralizers of BCI-algebras. (to appear) in Miskolc Math. Notes.
[13] Najafi, A., Eslami, E., Saeid, A. Borumand: A new type of nilpotent BCI-algebras. An. Ştiinţ. Univ. Al. I. Cuza Iaşi, Ser. Nouă, Mat. 64 (2018), 309-326 \99999MR99999 3896549 \filbreak. MR 3896549 | Zbl 0708.9742
Partner of
EuDML logo