Previous |  Up |  Next

Article

Keywords:
integer partition; chromatic partition; Ferrers graph; partition identity
Summary:
We provide combinatorial interpretations for three new classes of partitions, the so-called chromatic partitions. Using only combinatorial arguments, we show that these partition identities resemble well-know ordinary partition identities.
References:
[1] Alegri, M.: On new identities involving chromatic overpartitions. J. Ramanujan Soc. Math. Math. Sci. 7 (2020), 109-118. Zbl 1448.05009
[2] Andrews, G. E.: Partitions and Durfee dissection. Am. J. Math. 101 (1979), 735-742. DOI 10.2307/2373804 | MR 0533197 | Zbl 0409.10006
[3] Andrews, G. E., Eriksson, K.: Integer Partitions. Cambridge University Press, Cambridge (2004). DOI 10.1017/CBO9781139167239 | MR 2122332 | Zbl 1073.11063
[4] Bressoud, D. M.: A new family of partition identities. Pac. J. Math. 77 (1978), 71-74. DOI 10.2140/pjm.1978.77.71 | MR 0506017 | Zbl 0362.10016
[5] Corteel, S., Lovejoy, J.: Overpartitions. Trans. Am. Math. Soc. 356 (2004), 1623-1635. DOI 10.1090/S0002-9947-03-03328-2 | MR 2034322 | Zbl 1040.11072
[6] Euler, L.: De partitione numerorum, Caput XVI. Introductio in Analysin Infinitorum Leonardi Euleri Opera Omnia, Series Prima, Volumen Octavum. B. G. Teubner, Leipzig (1922), A. Krazer, F. Rudio Latin \99999JFM99999 48.0007.02. MR 0016336
[7] Pak, I.: Partition bijections, a survey. Ramanujan J. 12 (2006), 5-75. DOI 10.1007/s11139-006-9576-1 | MR 2267263 | Zbl 1103.05009
Partner of
EuDML logo