Previous |  Up |  Next

Article

Keywords:
signed graph; spectral radius; bicyclic graph
Summary:
A signed graph $\Gamma $ is a graph whose edges are labeled by signs. If $\Gamma $ has $n$ vertices, its spectral radius is the number $\rho (\Gamma ) := \max \{ | \lambda _i(\Gamma ) | \colon 1 \leq i \leq n \}$, where $\lambda _1(\Gamma ) \geq \cdots \geq \lambda _n(\Gamma )$ are the eigenvalues of the signed adjacency matrix $A(\Gamma )$. Here we determine the signed graphs achieving the minimal or the maximal spectral radius in the classes $\frak U_n$ and $\frak B_n$ of unbalanced unicyclic graphs and unbalanced bicyclic graphs, respectively.
References:
[1] Akbari, S., Belardo, F., Dodongeh, E., Nematollahi, M. A.: Spectral characterizations of signed cycles. Linear Algebra Appl. 553 (2018), 307-327. DOI 10.1016/j.laa.2018.05.012 | MR 3809382 | Zbl 1391.05126
[2] Akbari, S., Belardo, F., Heydari, F., Maghasedi, M., Souri, M.: On the largest eigenvalue of signed unicyclic graphs. Linear Algebra Appl. 581 (2019), 145-162. DOI 10.1016/j.laa.2019.06.016 | MR 3982012 | Zbl 1420.05070
[3] Akbari, S., Haemers, W. H., Maimani, H. R., Majd, L. Parsaei: Signed graphs cospectral with the path. Linear Algebra Appl. 553 (2018), 104-116. DOI 10.1016/j.laa.2018.04.021 | MR 3809370 | Zbl 1391.05156
[4] Belardo, F., Brunetti, M.: Connected signed graphs $L$-cospectral to signed $\infty$-graphs. Linear Multilinear Algebra 67 (2019), 2410-2426. DOI 10.1080/03081087.2018.1494122 | MR 4017722 | Zbl 1425.05067
[5] Belardo, F., Brunetti, M., Ciampella, A.: Signed bicyclic graphs minimizing the least Laplacian eigenvalue. Linear Algebra Appl. 557 (2018), 201-233. DOI 10.1016/j.laa.2018.07.026 | MR 3848268 | Zbl 1396.05066
[6] Belardo, F., Cioabă, S., Koolen, J., Wang, J.: Open problems in the spectral theory of signed graphs. Art Discrete Appl. Math. 1 (2018), Article ID P2.10, 23 pages. DOI 10.26493/2590-9770.1286.d7b | MR 3997096 | Zbl 1421.05052
[7] Belardo, F., Marzi, E. M. Li, Simić, S. K.: Some results on the index of unicyclic graphs. Linear Algebra Appl. 416 (2006), 1048-1059. DOI 10.1016/j.laa.2006.01.008 | MR 2242480 | Zbl 1092.05043
[8] Brualdi, R. A., Solheid, E. S.: On the spectral radius of connected graphs. Publ. Inst. Math., Nouv. Sér. 39 (1986), 45-54. MR 0869175 | Zbl 0603.05028
[9] Brunetti, M.: On the existence of non-golden signed graphs. Atti Accad. Peloritana Pericolanti, Cl. Sci. Fis. Mat. Nat. 96 (2018), Article A2, 10 pages. DOI 10.1478/AAPP.96S2A2 | MR 3900933
[10] Chang, A., Tian, F., Yu, A.: On the index of bicyclic graphs with perfect matchings. Discrete Math. 283 (2004), 51-59. DOI 10.1016/j.disc.2004.02.005 | MR 2060353 | Zbl 1064.05118
[11] Cvetković, D., Rowlinson, P.: Spectra of unicyclic graphs. Graphs Comb. 3 (1987), 7-23. DOI 10.1007/BF01788525 | MR 0932109 | Zbl 0623.05038
[12] Cvetković, D., Rowlinson, P., Simić, S.: Eigenspaces of Graphs. Encyclopedia of Mathematics and Its Applications 66. Cambridge University Press, Cambridge (1997). DOI 10.1017/CBO9781139086547 | MR 1440854 | Zbl 0878.05057
[13] Guo, S.-G.: The spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices. Linear Algebra Appl. 408 (2005), 78-85. DOI 10.1016/j.laa.2005.05.022 | MR 2166856 | Zbl 1073.05550
[14] Guo, S.-G.: On the spectral radius of bicyclic graphs with $n$ vertices and diameter $d$. Linear Algebra Appl. 422 (2007), 119-132. DOI 10.1016/j.laa.2006.09.011 | MR 2298999 | Zbl 1112.05064
[15] McKee, J., Smyth, C.: Integer symmetric matrices having all their eigenvalues in the interval $[-2, 2]$. J. Algebra 317 (2007), 260-290. DOI 10.1016/j.jalgebra.2007.05.019 | MR 2360149 | Zbl 1140.15007
[16] Simić, S. K.: On the largest eigenvalue of unicyclic graphs. Publ. Inst. Math., Nouv. Sér. 42 (1987), 13-19. MR 0937447 | Zbl 0641.05040
[17] Simić, S. K.: On the largest eigenvalue of bicyclic graphs. Publ. Inst. Math., Nouv. Sér. 46 (1989), 1-6. MR 1060049 | Zbl 0747.05058
[18] Stanić, Z.: Bounding the largest eigenvalue of signed graphs. Linear Algebra Appl. 573 (2019), 80-89. DOI 10.1016/j.laa.2019.03.011 | MR 3933292 | Zbl 1411.05109
[19] Stevanović, D.: Spectral Radius of Graphs. Elsevier Academic Press, Amsterdam (2015). DOI 10.1016/c2014-0-02233-2 | Zbl 1309.05001
[20] Yu, A., Tian, F.: On the spectral radius of bicyclic graphs. MATCH Commun. Math. Comput. Chem. 52 (2004), 91-101. MR 2104641 | Zbl 1080.05522
[21] Zaslavsky, T.: Biased graphs. I: Bias, balance, and gains. J. Comb. Theory, Ser. B 47 (1989), 32-52. DOI 10.1016/0095-8956(89)90063-4 | MR 1007712 | Zbl 0714.05057
[22] Zaslavsky, T.: Matrices in the theory of signed simple graphs. Advances in Discrete Mathematics and Applications Ramanujan Mathematical Society Lecture Notes Series 13. Ramanujan Mathematical Society, Mysore (2010), 207-229. MR 2766941 | Zbl 1231.05120
[23] Zaslavsky, T.: A mathematical bibliography of signed and gain graphs and allied areas. Electron. J. Comb., Dynamic Surveys 5 (1998), Article ID DS8, 127 pages. DOI 10.37236/29 | MR 1744869 | Zbl 0898.05001
[24] Zaslavsky, T.: Glossary of signed and gain graphs and allied areas. Electron. J. Comb., Dynamic Survey 5 (1998), Article ID DS9, 41 pages. DOI 10.37236/31 | MR 1744870 | Zbl 0898.05002
Partner of
EuDML logo