[1] Aradi, B.:
Left invariant Finsler manifolds are generalized Berwald. Eur. J. Pure Appl. Math. 8 (2015), 118–125.
MR 3313971
[2] Arnold, V.I.:
Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier (Grenoble) 16 (1) (1966), 319–361.
DOI 10.5802/aif.233 |
MR 0202082
[3] Bacso, S., Cheng, X., Shen, Z.:
Curvature properties of $(\alpha ,\beta )$-metrics. Finsler Geometry, Sapporo 2005, Adv. Stud. Pure Math., vol. 48, 2007, pp. 73–110.
MR 2389252
[4] Berndt, J., Tricceri, F., Vanhecke, L.:
Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces. Lecture Notes in Math., vol. 1598, Springer, Heidelberg, 1995.
MR 1340192
[6] Chern, S.S., Shen, Z.:
Riemann-Finsler geometry. World Scientific, Singapore, 2005.
MR 2169595
[8] Deng, S.:
Homogeneous Finsler spaces. Springer, New York, 2012.
MR 2962626
[9] Deng, S., Hosseini, M., Liu, H., Salimi Moghaddam, H.R.:
On the left invariant $(\alpha ,\beta )$-metrics on some Lie groups. to appear in Houston Journal of Mathematics.
MR 4102870
[12] Fasihi-Ramandi, Gh., Azami, S.: Geometry of left invariant Randers metric on the Heisenberg group. submitted.
[14] Kowalski, O., Vanhecke, L.:
Riemannian manifolds with homogeneous geodesics. Boll. Un. Mat. Ital. B (7) 5 (1) (1991), 189–246.
MR 1110676 |
Zbl 0731.53046
[15] Latifi, D.:
Bi-invariant Randers metrics on Lie groups. Publ. Math. Debrecen 76 (1–2) (2010), 219–226.
MR 2598183
[16] Lengyelné Tóth, A., Kovács, Z.:
Left invariant Randers metrics on the 3-dimensional Heisenberg group. Publ. Math. Debrecen 85 (1–2) (2014), 161–179.
DOI 10.5486/PMD.2014.5894 |
MR 3231513
[17] Lengyelné Tóth, A., Kovács, Z.:
Curvatures of left invariant Randers metric on the five-dimensional Heisenberg group. Balkan J. Geom. Appl. 22 (1) (2017), 33–40.
MR 3678008
[18] Liu, H., Deng, S.:
Homogeneous $(\alpha ,\beta )$-metrics of Douglas type. Forum Math. (2014), 1–17.
MR 3393392
[20] Nasehi, M.:
On 5-dimensional 2-step homogeneous Randers nilmanifolds of Douglas type. Bull. Iranian Math. Soc. 43 (2017), 695–706.
MR 3670890
[21] Nasehi, M.:
On the Geometry of Higher Dimensional Heisenberg Groups. Mediterr. J. Math. 29 (2019), 1–17.
MR 3911142
[22] Nasehi, M., Aghasi, M.: On the geometry of Douglas Heisenberg group. 48th Annual Irannian Mathematics Conference, 2017, pp. 1720–1723.
[23] Parhizkar, M., Salimi Moghaddam, H.R.:
Geodesic vector fields of invariant $(\alpha ,\beta )$-metrics on homogeneous spaces. Int. Electron. J. Geom. 6 (2) (2013), 39–44.
MR 3125830