[1] Ager, C., Schott, B., Vuong, A.-T., Popp, A., Wall, W. A.:
A consistent approach for fluidstructure-contact interaction based on a porous flow model for rough surface contact. Int. J. Numer. Methods Eng. 119 (2019), 1345-1378.
DOI 10.1002/nme.6094 |
MR 4007823
[2] Ager, C., Seitz, A., Wall, W. A.:
A consistent and comprehensive computational approach for general fluid-structure-contact interaction problems. Available at
https://arxiv.org/abs/1905.09744 (2019), 34 pages.
[4] Alauzet, F., Fabrèges, B., Fernández, M. A., Landajuela, M.:
Nitsche-XFEM for the coupling of an incompressible fluid with immersed thin-walled structures. Comput Methods Appl. Mech. Eng. 301 (2016), 300-335.
DOI 10.1016/j.cma.2015.12.015 |
MR 3456852 |
Zbl 1423.76201
[5] Antonietti, P., Verani, M., Vergara, C., Zonca, S.:
Numerical solution of fluid-structure interaction problems by means of a high order Discontinuous Galerkin method on polygonal grids. Finite Elem. Anal. Des. 159 (2019), 1-14.
DOI 10.1016/j.finel.2019.02.002 |
MR 3924531
[10] Bazilevs, Y., Hsu, M.-C., Kiendl, J., Wüchner, R., Bletzinger, K.-U.:
3D simulation of wind turbine rotors at full scale II. Fluid-structure interaction modeling with composite blades. Int. J. Numer. Methods Fluids 65 (2011), 236-253.
DOI 10.1002/fld.2454 |
Zbl 1428.76087
[23] Burman, E., Hansbo, P., Larson, M. G.:
Augmented Lagrangian and Galerkin least-squares methods for membrane contact. Int. J. Numer. Methods Eng. 114 (2018), 1179-1191.
DOI 10.1002/nme.5781 |
MR 3825018
[25] Chouly, F., Fabre, M., Hild, P., Mlika, R., Pousin, J., Renard, Y.:
An overview of recent results on Nitsche's method for contact problems. Geometrically Unfitted Finite Element Methods and Applications Lecture Notes in Computational Science and Engineering 121. Springer, Cham (2017), 93-141.
DOI 10.1007/978-3-319-71431-8_4 |
MR 3806649 |
Zbl 1390.74003
[29] Chouly, F., Renard, Y.:
Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems. Adv. Model. Simul. Eng. Sci. 5 (2018), Article ID 31, 38 pages.
DOI 10.1186/s40323-018-0124-5
[30] Donea, J., Giuliani, S., Halleux, J. P.:
An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33 (1982), 689-723.
DOI 10.1016/0045-7825(82)90128-1 |
Zbl 0508.73063
[31] Farhat, C., Lesoinne, M., Tallec, P. Le:
Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods App. Mech. Eng. 157 (1998), 95-114.
DOI 10.1016/S0045-7825(97)00216-8 |
MR 1624215 |
Zbl 0951.74015
[32] Formaggia, L., Nobile, F.:
A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements. East-West J. Numer. Math. 7 (1999), 105-131.
MR 1699243 |
Zbl 0942.65113
[34] Frei, S.:
Eulerian Finite Element Methods for Interface Problems and Fluid-Structure Interactions: PhD. Thesis. Heidelberg University, Heildelberg (2016).
DOI 10.11588/heidok.00021590
[38] Griffith, B. E.:
Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28 (2012), 317-345.
DOI 10.1002/cnm.1445 |
MR 2910281 |
Zbl 1243.92017
[40] Hansbo, P., Hermansson, J., Svedberg, T.:
Nitsche's method combined with space-time finite elements for ALE fluid-structure interaction problems. Comput. Methods Appl. Mech. Eng. 193 (2004), 4195-4206.
DOI 10.1016/j.cma.2003.09.029 |
MR 2087009 |
Zbl 1175.74082
[42] Kikuchi, N., Oden, J. T.:
Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods. SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics, Philadelphia (1988).
DOI 10.1137/1.9781611970845 |
MR 0961258 |
Zbl 0685.73002
[49] Oñate, E., Celigueta, M. A., Idelsohn, S. R., Salazar, F., Suárez, B.:
Possibilities of the particle finite element method for fluid-soil-structure interaction problems. Comput. Mech. 48 (2011), 307-318.
DOI 10.1007/s00466-011-0617-2 |
MR 2833086 |
Zbl 1398.76120
[50] Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., Pan, T.-W.:
A new formulation of the distributed Lagrange multiplier/fictitious domain method for particulate flows. Int. J. Multiphase Flow 26 (2000), 1509-1524.
DOI 10.1016/S0301-9322(99)00100-7 |
MR 2436653 |
Zbl 1137.76712
[53] Rannacher, R., Richter, T.:
An adaptive finite element method for fluid-structure interaction problems based on a fully Eulerian formulation. Fluid Structure Interaction II. Modelling, Simulation, Optimization Lecture Notes in Computational Science and Engineering 73. Springer, Berlin (2010), 159-191.
DOI 10.1007/978-3-642-14206-2_7 |
MR 3050403 |
Zbl 1214.76005
[54] Rega, G.:
Nonlinear vibrations of suspended cables I. Modeling and analysis. Appl. Mech. Rev. 57 (2004), 443-478.
DOI 10.1115/1.1777224
[58] Saksono, P. H., Dettmer, W. G., Perić, D.:
An adaptive remeshing strategy for flows with moving boundaries and fluid-structure interaction. Int. J. Numer. Methods Eng. 71 (2007), 1009-1050.
DOI 10.1002/nme.1971 |
MR 2348756 |
Zbl 1194.76140
[59] Vergara, C., Zonca, S.:
Extended finite elements method for fluid-structure interaction with an immersed thick non-linear structure. Mathematical and Numerical Modeling of the Cardiovascular System and Applications SEMA SIMAI Springer Series 16. Springer, Cham (2018), 209-243.
DOI 10.1007/978-3-319-96649-6_9 |
MR 3887547
[60] Wriggers, P., Zavarise, G.:
Computational contact mechanics. Encyclopedia of Computational Mechanics II. Solids and Structures John Wiley & Sons, Chichester (2004), Article ID 6.
DOI 10.1002/0470091355.ecm033
[61] Xu, D., Kaliviotis, E., Munjiza, A., Avital, E., Ji, C., Williams, J.:
Large scale simulation of red blood cell aggregation in shear flows. J. Biomech. 46 (2013), 1810-1817.
DOI 10.1016/j.jbiomech.2013.05.010
[62] Zhang, H., Liu, L., Dong, M., Sun, H.:
Analysis of wind-induced vibration of fluid-structure interaction system for isolated aqueduct bridge. Eng. Struct. 46 (2013), 28-37.
DOI 10.1016/j.engstruct.2012.07.019
[63] Zonca, S.: Unfitted Numerical Methods for Fluid-Structure Interaction Arising Between an Incompressible Fluid and an Immersed Thick Structure: PhD. Thesis. Politecnico di Milano, Milano (2018).
[64] Zonca, S., Vergara, C., Formaggia, L.:
An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach. SIAM J. Sci. Comput. 40 (2018), B59--B84.
DOI 10.1137/16M1097602 |
MR 3745000 |
Zbl 1395.74087