[3] Chems-Eddin, M.M., Müller, K.: $2$-class groups of cyclotomic towers of imaginary biquadratic fields and applications. Accepted for publication in Int. J. Number Theory, arXiv:2002.03602.
[4] Connor, P.E., Hurrelbrink, J.:
Class number parity. Series in Pure Mathematics, World Scientific, 1988.
MR 0963648
[6] Gras, G.:
Sur les l-classes d’idéaux dans les extensions cycliques relatives de degré premier l. Ann. Inst. Fourier (Grenoble) 23 (1973), 1–48.
DOI 10.5802/aif.480 |
MR 0360519
[7] Hilbert, D.:
Über die Theorie des relativquadratischen Zahlkörpers. Math. Annal. 51 (1898), 1–127.
DOI 10.1007/BF01905120
[8] Hubbard, D., Washington, L.C.:
Iwasawa Invariants of some non-cyclotomic $\mathbb{Z}$-extensions. arXiv:1703.06550.
MR 3778621
[10] Li, J., Ouyang, Y., Xu, Y., Zhang, S.: $l$-class groups of fields in Kummer towers. arXiv:1905.04966.
[11] Masley, J.M., Montgomery, H.L.:
Cyclotomic fields with unique factorization. J. Reine Angew. Math. 286/287 (1976), 248–256.
MR 0429824
[12] McCall, T.M., Parry, C.J., Ranalli, R.R.:
Imaginary bicyclic biquadratic fields with cyclic $2$-class group. J. Number Theory 53 (1995), 88–99.
DOI 10.1006/jnth.1995.1079 |
MR 1344833
[14] Washington, L.C.:
Introduction to cyclotomic fields. Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, second ed., 1997.
MR 1421575