Previous |  Up |  Next

Article

Keywords:
Time scales; Radon's Inequality; Bergström's Inequality; Schlömilch's Inequality; Rogers-Hölder's Inequality.
Summary:
The aim of this paper is to synthesize discrete and continuous versions of some dynamic inequalities such as Radon's Inequality, Bergström's Inequality, Schlömilch's Inequality and Rogers-Hölder's Inequality on time scales in comprehensive form.
References:
[1] Agarwal, R.P., O'Regan, D., Saker, S.H.: Dynamic Inequalities on Time Scales. 2014, Springer International Publishing, Cham, Switzerland, MR 3307947
[2] Ammi, M.R.S., Torres, D.F.M.: Hölder's and Hardy's two dimensional diamond-alpha inequalities on time scales. Ann. Univ. Craiova, Math. Comp. Sci. Series, 37, 1, 2010, 1-11, MR 2609350
[3] Anderson, D., Bullock, J., Erbe, L., Peterson, A., Tran, H.: Nabla dynamic equations on time scales. Panam. Math. J., 13, 1, 2003, 1-48, MR 1953216
[4] Beckenbach, E.F., Bellman, R.: Inequalities. 1961, Springer, Berlin, Göttingen and Heidelberg, MR 0158038
[5] Bellman, R.: Notes on matrix theory -- IV (An inequality due to Bergström). Amer. Math. Monthly, 62, 3, 1955, 172-173, DOI 10.2307/2306621 | MR 0072834
[6] Bergström, H.: A triangle inequality for matrices. In Den Elfte Skandinaviske Matematikerkongress (1949) Trondheim, Johan Grundt Tanums Forlag, Oslo, 1952, 264-267, MR 0053064
[7] Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. 2001, Birkhäuser Boston, Inc., Boston, MA, MR 1843232 | Zbl 0993.39010
[8] Bohner, M., Peterson, A.: Advances in Dynamic Equations on Time Scales. 2003, Birkhäuser Boston, Boston, MA, MR 1843232 | Zbl 1025.34001
[9] Bătineţu-Giurgiu, D.M., Pop, O.T.: A generalization of Radon's inequality. Creative Math. & Inf., 19, 2, 2010, 116-121, MR 2761455
[10] Bătineţu-Giurgiu, D.M., Stanciu, N.: New generalizations and new approaches for two IMO problems. Journal of Science and Arts, 12, 1, 2012, 25-34, MR 2911825
[11] Bătineţu-Giurgiu, D.M., Mărghidanu, D., Pop, O.T.: A refinement of a Radon type inequality. Creat. Math. Inform., 27, 2, 2018, 115-122, DOI 10.37193/CMI.2018.02.03 | MR 3885356
[12] Hardy, G.H., Littlewood, J.E., Pölya, G.: Inequalities. 1952, 2nd Ed., Cambridge, University Press, MR 0046395
[13] Hilger, S.: Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten. 1988, Ph.D. Thesis, Universität Würzburg, Zbl 0695.34001
[14] Hölder, O.: Über einen Mittelwertsatz. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg\-Augusts-Universität zu Göttingen, 1889, 38-47,
[15] Mitrinović , D.S.: Analytic Inequalities. 1970, Springer-Verlag, Berlin, MR 0274686
[16] Radon, J.: Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitzungsber. Acad. Wissen. Wien, 122, 1913, 1295-1438,
[17] Sahir, M.J.S.: Hybridization of classical inequalities with equivalent dynamic inequalities on time scale calculus. The Teaching of Mathematics, XXI, 1, 2018, 38-52, MR 3782912
[18] Sahir, M.J.S.: Formation of versions of some dynamic inequalities unified on time scale calculus. Ural Math. J., 4, 2, 2018, 88-98, DOI 10.15826/umj.2018.2.010 | MR 3901588
[19] Sheng, Q., Fadag, M., Henderson, J., Davis, J.M.: An exploration of combined dynamic derivatives on time scales and their applications. Nonlinear Analysis: Real World Appl., 7, 3, 2006, 395-413, DOI 10.1016/j.nonrwa.2005.03.008 | MR 2235865
Partner of
EuDML logo