[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.:
The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129,
DOI 10.1142/S0218196719500437 |
MR 3996987
[3] Alvarez, M.A.: The variety of $7$-dimensional $2$-step nilpotent Lie algebras. Symmetry, 10, 1, 2018, 26, Multidisciplinary Digital Publishing Institute,
[4] Burde, D., Fialowski, A.:
Jacobi--Jordan algebras. Linear Algebra and its Applications, 459, 2014, 586-594, Elsevier,
MR 3247244
[5] Burde, D., Steinhoff, C.:
Classification of orbit closures of $4$-dimensional complex Lie algebras. Journal of Algebra, 214, 2, 1999, 729-739, Academic Press,
DOI 10.1006/jabr.1998.7714 |
MR 1680532
[6] Cicalò , S., Graaf, W. De, Schneider, C.:
Six-dimensional nilpotent Lie algebras. Linear Algebra and its Applications, 436, 1, 2012, 163-189, Elsevier,
DOI 10.1016/j.laa.2011.06.037 |
MR 2859920
[7] Darijani, I., Usefi, H.:
The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra, 464, 2016, 97-140, Elsevier,
DOI 10.1016/j.jalgebra.2016.06.011 |
MR 3533425
[9] Graaf, W.A. De:
Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation, 28, 01, 2018, 133-161, World Scientific,
MR 3768261
[10] Ouaridi, A. Fernandez, Kaygorodov, I., Khrypchenko, M., Yu. Volkov: Degenerations of nilpotent algebras. arXiv:1905.05361.
[11] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.:
The geometric classification of nilpotent Tortkara algebras. Communications in Algebra, 48, 1, 2020, 204-209, Taylor & Francis,
DOI 10.1080/00927872.2019.1635612 |
MR 4060024
[14] Hegazi, A.S., Abdelwahab, H.:
Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra and its Applications, 494, 2016, 165-218, Elsevier,
DOI 10.1016/j.laa.2016.01.015 |
MR 3455692
[15] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderon:
The classification of $N$-dimensional non-Lie Malcev algebras with $(N-4)$-dimensional annihilator. Linear Algebra and its Applications, 505, 2016, 32-56, Elsevier,
DOI 10.1016/j.laa.2016.04.029 |
MR 3506483
[16] Ismailov, N., Kaygorodov, I., Mashurov, F.:
The algebraic and geometric classification of nilpotent assosymmetric algebras. Algebras and Representation Theory, 2020, 14 pp, Springer, DOI: 10.1007/s10468-019-09935-y.
DOI 10.1007/s10468-019-09935-y |
MR 4207393
[17] Ismailov, N., Kaygorodov, I., Yu. Volkov:
The geometric classification of Leibniz algebras. International Journal of Mathematics, 29, 05, 2018, Article 1850035, World Scientific,
DOI 10.1142/S0129167X18500350 |
MR 3808051
[18] Ismailov, N., Kaygorodov, I., Yu. Volkov:
Degenerations of Leibniz and anticommutative algebras. Canadian Mathematical Bulletin, 62, 3, 2019, 539-549, Canadian Mathematical Society,
DOI 10.4153/S0008439519000018 |
MR 3998738
[19] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.:
The algebraic and geometric classification of nilpotent Novikov algebras. Journal of Geometry and Physics, 143, 2019, 11-21, Elsevier,
DOI 10.1016/j.geomphys.2019.04.016 |
MR 3954151
[20] Kaygorodov, I., Khrypchenko, M., Lopes, S.:
The algebraic and geometric classification of nilpotent anticommutative algebras. Journal of Pure and Applied Algebra, 224, 8, 2020, Article 106337,
MR 4074577
[21] Kaygorodov, I., Yu. Popov, Yu. Volkov:
Degenerations of binary Lie and nilpotent Malcev algebras. Communications in Algebra, 46, 11, 2018, 4928-4940, Taylor & Francis,
DOI 10.1080/00927872.2018.1459647 |
MR 3864274
[22] Kaygorodov, I., Yu. Volkov:
The Variety of Two-dimensional Algebras Over an Algebraically Closed Field. Canadian Journal of Mathematics, 71, 4, 2019, 819-842, Canadian Mathematical Society,
DOI 10.4153/S0008414X18000056 |
MR 3984022
[25] Ren, B., Zhu, L.S.:
Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, 67, 4, 2017, 953-965, Springer,
DOI 10.21136/CMJ.2017.0253-16 |
MR 3736011
[26] Seeley, C.:
Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb {C}$. Communications in Algebra, 18, 10, 1990, 3493-3505, Taylor & Francis,
DOI 10.1080/00927879008824088 |
MR 1063991
[27] Skjelbred, T., Sund, T.:
Sur la classification des algèbres de Lie nilpotentes. Comptes rendus de l'Académie des Sciences, 286, 5, 1978, A241-A242,
MR 0498734
[28] Zhevlakov, K.A.:
Solvability and nilpotency of Jordan rings. Algebra i Logika, 5, 3, 1966, 37-58,
MR 0207786