Previous |  Up |  Next

Article

Keywords:
Nilpotent algebra; mock-Lie algebra; dual mock-Lie algebra; anticommutative algebra; algebraic classification; geometric classification; central extension; degeneration
Summary:
We classify all complex $7$- and $8$-dimensional dual mock-Lie algebras by the algebraic and geometric way. Also, we find all non-trivial complex $9$-dimensional dual mock-Lie algebras.
References:
[1] Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. International Journal of Algebra and Computation, 29, 6, 2019, 1113-1129, DOI 10.1142/S0218196719500437 | MR 3996987
[2] Alvarez, M.A.: On rigid $2$-step nilpotent Lie algebras. Algebra Colloquium, 25, 02, 2018, 349-360, DOI 10.1142/S100538671800024X | MR 3805328
[3] Alvarez, M.A.: The variety of $7$-dimensional $2$-step nilpotent Lie algebras. Symmetry, 10, 1, 2018, 26, Multidisciplinary Digital Publishing Institute,
[4] Burde, D., Fialowski, A.: Jacobi--Jordan algebras. Linear Algebra and its Applications, 459, 2014, 586-594, Elsevier, MR 3247244
[5] Burde, D., Steinhoff, C.: Classification of orbit closures of $4$-dimensional complex Lie algebras. Journal of Algebra, 214, 2, 1999, 729-739, Academic Press, DOI 10.1006/jabr.1998.7714 | MR 1680532
[6] Cicalò , S., Graaf, W. De, Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra and its Applications, 436, 1, 2012, 163-189, Elsevier, DOI 10.1016/j.laa.2011.06.037 | MR 2859920
[7] Darijani, I., Usefi, H.: The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. Journal of Algebra, 464, 2016, 97-140, Elsevier, DOI 10.1016/j.jalgebra.2016.06.011 | MR 3533425
[8] Graaf, W.A. De: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not $2$. Journal of Algebra, 309, 2, 2007, 640-653, Elsevier, DOI 10.1016/j.jalgebra.2006.08.006 | MR 2303198
[9] Graaf, W.A. De: Classification of nilpotent associative algebras of small dimension. International Journal of Algebra and Computation, 28, 01, 2018, 133-161, World Scientific, MR 3768261
[10] Ouaridi, A. Fernandez, Kaygorodov, I., Khrypchenko, M., Yu. Volkov: Degenerations of nilpotent algebras. arXiv:1905.05361.
[11] Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The geometric classification of nilpotent Tortkara algebras. Communications in Algebra, 48, 1, 2020, 204-209, Taylor & Francis, DOI 10.1080/00927872.2019.1635612 | MR 4060024
[12] Grunewald, F., O'Halloran, J.: Varieties of nilpotent Lie algebras of dimension less than six. Journal of Algebra, 112, 2, 1988, 315-325, Academic Press, DOI 10.1016/0021-8693(88)90093-2 | MR 0926608
[13] Grunewald, F., O'Halloran, J.: A characterization of orbit closure and applications. Journal of Algebra, 116, 1, 1988, 163-175, Elsevier, DOI 10.1016/0021-8693(88)90199-8 | MR 0944153
[14] Hegazi, A.S., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra and its Applications, 494, 2016, 165-218, Elsevier, DOI 10.1016/j.laa.2016.01.015 | MR 3455692
[15] Hegazi, A.S., Abdelwahab, H., Martin, A.J. Calderon: The classification of $N$-dimensional non-Lie Malcev algebras with $(N-4)$-dimensional annihilator. Linear Algebra and its Applications, 505, 2016, 32-56, Elsevier, DOI 10.1016/j.laa.2016.04.029 | MR 3506483
[16] Ismailov, N., Kaygorodov, I., Mashurov, F.: The algebraic and geometric classification of nilpotent assosymmetric algebras. Algebras and Representation Theory, 2020, 14 pp, Springer, DOI: 10.1007/s10468-019-09935-y. DOI 10.1007/s10468-019-09935-y | MR 4207393
[17] Ismailov, N., Kaygorodov, I., Yu. Volkov: The geometric classification of Leibniz algebras. International Journal of Mathematics, 29, 05, 2018, Article 1850035, World Scientific, DOI 10.1142/S0129167X18500350 | MR 3808051
[18] Ismailov, N., Kaygorodov, I., Yu. Volkov: Degenerations of Leibniz and anticommutative algebras. Canadian Mathematical Bulletin, 62, 3, 2019, 539-549, Canadian Mathematical Society, DOI 10.4153/S0008439519000018 | MR 3998738
[19] Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, A.: The algebraic and geometric classification of nilpotent Novikov algebras. Journal of Geometry and Physics, 143, 2019, 11-21, Elsevier, DOI 10.1016/j.geomphys.2019.04.016 | MR 3954151
[20] Kaygorodov, I., Khrypchenko, M., Lopes, S.: The algebraic and geometric classification of nilpotent anticommutative algebras. Journal of Pure and Applied Algebra, 224, 8, 2020, Article 106337, MR 4074577
[21] Kaygorodov, I., Yu. Popov, Yu. Volkov: Degenerations of binary Lie and nilpotent Malcev algebras. Communications in Algebra, 46, 11, 2018, 4928-4940, Taylor & Francis, DOI 10.1080/00927872.2018.1459647 | MR 3864274
[22] Kaygorodov, I., Yu. Volkov: The Variety of Two-dimensional Algebras Over an Algebraically Closed Field. Canadian Journal of Mathematics, 71, 4, 2019, 819-842, Canadian Mathematical Society, DOI 10.4153/S0008414X18000056 | MR 3984022
[23] Kaygorodov, I., Yu. Volkov: Complete classification of algebras of level two. Moscow Mathematical Journal, 19, 3, 2019, 485-521, DOI 10.17323/1609-4514-2019-19-3-485-521 | MR 3993005
[24] Okubo, S., Kamiya, N.: Jordan--Lie super algebra and Jordan--Lie triple system. Journal of Algebra, 198, 2, 1997, 388-411, Elsevier, DOI 10.1006/jabr.1997.7144 | MR 1489904
[25] Ren, B., Zhu, L.S.: Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. Czechoslovak Mathematical Journal, 67, 4, 2017, 953-965, Springer, DOI 10.21136/CMJ.2017.0253-16 | MR 3736011
[26] Seeley, C.: Degenerations of 6-dimensional nilpotent Lie algebras over $\mathbb {C}$. Communications in Algebra, 18, 10, 1990, 3493-3505, Taylor & Francis, DOI 10.1080/00927879008824088 | MR 1063991
[27] Skjelbred, T., Sund, T.: Sur la classification des algèbres de Lie nilpotentes. Comptes rendus de l'Académie des Sciences, 286, 5, 1978, A241-A242, MR 0498734
[28] Zhevlakov, K.A.: Solvability and nilpotency of Jordan rings. Algebra i Logika, 5, 3, 1966, 37-58, MR 0207786
[29] Zusmanovich, P.: Central extensions of current algebras. Transactions of the American Mathematical Society, 334, 1, 1992, 143-152, DOI 10.1090/S0002-9947-1992-1069751-2 | MR 1069751
[30] Zusmanovich, P.: Special and exceptional mock-Lie algebras. Linear Algebra and its Applications, 518, 2017, 79-96, Elsevier, DOI 10.1016/j.laa.2016.12.029 | MR 3598575
Partner of
EuDML logo