[1] Bakhturin, Yu.A., Semenov, K.N.:
On the finite approximability of solvable varieties of Lie algebras. Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika, 6, 1986, 59-61, Lomonosov Moscow State University, English transl. in Moscow University Mathematics Bulletin 41 (1986), 49-51.
MR 0872075
[3] Bloh, A.:
On a generalization of Lie algebra notion. USSR Doklady, 165, 3, 1965, 471-473,
MR 0193114
[4] Dallmer, E.:
On Lie algebras all nilpotent subalgebras of which are Abelian. Journal of Mathematical Physics, 40, 8, 1999, 4151-4156, American Institute of Physics,
MR 1702410
[5] Drenski, V.S.:
Solvable Lie $A$-algebras. Serdica, 9, 1983, 132-135,
MR 0731837
[6] Jacobson, N.:
Lie Algebras. 1962, Interscience Publishers, New York-London, Interscience Tracts on Pure and Applied Mathematics, no. 10.
MR 0143793 |
Zbl 0121.27504
[7] Loday, J.L.:
Une version non commutative des algèbres de Lie: les algèbres de Leibniz. L'Enseignement Mathématique, 39, 3-4, 1993, 269-293,
MR 1252069
[8] Loday, J.-L., Pirashvili, T.:
Universal enveloping algebras of Leibniz algebras and (co)homology. Mathematische Annalen, 296, 1, 1993, 139-158, Springer-Verlag,
DOI 10.1007/BF01445099 |
MR 1213376
[9] Premet, A.A.:
Inner ideals in modular Lie algebras. Vestsī Akad. Navuk BSSR Ser. Fīz.-Mat. Navuk, 5, 1986, 11-15,
MR 0876665
[12] Ray, C.B., Bosko-Dunbar, L., Hedges, A., Hird, J.T., Stagg, K., Stitzinger, E.:
A Frattini theory for Leibniz algebras. Communications in Algebra, 41, 4, 2013, 1547-1557, Taylor & Francis,
DOI 10.1080/00927872.2011.643844 |
MR 3044424
[13] Ray, C.B., Combs, A., Gin, N., Hedges, A., Hird, J.T., Zack, L.:
Nilpotent Lie and Leibniz algebras. Communications in Algebra, 42, 6, 2014, 2404-2410, Taylor & Francis,
DOI 10.1080/00927872.2012.717655 |
MR 3169714
[14] Schafer, R.D.:
An introduction to nonassociative algebras (Pure & Applied Mathematics). 1966, Academic Press, New York,
MR 0210757
[15] Semenov, K.N.:
Conditions for a variety and a quasivariety generated by a finite Lie algebra to coincide (Russian. English, Russian summaries), Abelian Groups and modules. Abelian Groups and modules, Tomsk. Gos. Univ. Tomsk, 10, 1991, 134-138,
MR 1197373
[16] Sheina, G.V.:
Varieties of metabelian Lie $A$-algebras. I. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 4, 1977, 37-46, English transl. in Moscow University Mathematics Bulletin 32 (1977), 28-35..
MR 0486027
[17] Sheina, G.V.:
Varieties of metabelian Lie $A$-algebras. II. Vestnik Moskov. Univ. Ser. I Mat. Mekh., 3, 1978, 52-59, English transl. in Moscow University Mathematics Bulletin 33 (1978), 48-54..
MR 0486028
[18] Sheina, G.V.:
Metabelian varieties Lie $A$-algebras. Russian. Uspekhi Matematicheskikh Nauk, 33, 1978, 209-210,
MR 0486029
[22] Towers, D.A., Varea, V.R.:
Further results on elementary Lie algebras and Lie $A$-algebras. Communications in Algebra, 41, 4, 2013, 1432-1441, Taylor & Francis,
DOI 10.1080/00927872.2011.643667 |
MR 3044418
[23] Winter, D.J.:
Abstract Lie Algebras. 1972, M.I.T. Press, Cambridge, Mass.,
MR 0332905