Previous |  Up |  Next

Article

Keywords:
quasigroup; Bol--Moufang type identity; right unit; left unit
Summary:
We proceed with Kunen's research about existence of units (left, right, two-sided) in quasigroups with classical Bol--Moufang type identities, listed in paper Extra loops II, by F. Fenyves (1969). We consider those Bol--Moufang identities where it has not been decided yet whether a quasigroup fulfilling this identity has to possess a left or right identity. We also provide a table of all Moufang--Bol identities, indicating at each whether it describes the variety of groups, and whether it forces out the left unit or the right unit.
References:
[1] Akhtar R., Arp A., Kaminski M., Van Exel J., Vernon D., Washington C.: The varieties of Bol–Moufang quasigroups defined by a single operation. Quasigroups Related Systems 20 (2012), no. 1, 1–10. MR 3013362
[2] Belousov V. D.: Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967 (Russian). MR 0218483
[3] Birkhoff G.: Lattice Theory. American Mathematical Society Colloquium Publications, XXV, American Mathematical Society, Providence, 1967. MR 0227053 | Zbl 0537.06001
[4] Birkhoff G.: Lattice Theory. Nauka, Moscow, 1984 (Russian). MR 0751233 | Zbl 0537.06001
[5] Chein O., Orlik-Pflugfelder H.: The smallest Moufang loop. Arch. Math. (Basel) 22 (1971), 573–576. DOI 10.1007/BF01222620 | MR 0297914
[6] Coté B., Harvill B., Huhn M., Kirchman A.: Classification of loops of generalized Bol–Moufang type. Quasigroups Related Systems 19 (2011), no. 2, 193–206. MR 2932940
[7] Dart B. C., Goodaire E. G.: Loop rings satisfying identities of Bol–Moufang type. J. Algebra Appl. 8 (2009), no. 3, 401–411. DOI 10.1142/S0219498809003394 | MR 2535998
[8] Evans T.: Homomorphisms of non-associative systems. J. London Math. Soc. 24 (1949), 254–260. DOI 10.1112/jlms/s1-24.4.254 | MR 0032664
[9] Fenyves F.: Extra loops. II. On loops with identities of Bol–Moufang type. Publ. Math. Debrecen 16 (1969), 187–192. MR 0262409
[10] Gagola S. M.: How and why Moufang loops behave like groups. Quasigroups Related Systems 19 (2011), no. 1, 1–22. MR 2850316
[11] Galkin V. M.: Quasigroups. Itogi Nauki i Tekhniki, Algebra. Topology. Geometry 26 (1988), 3–44 (Russian). MR 0978392
[12] Horosh G., Shcherbacov V., Tcachenco A., Yatsko T.: On groupoids with classical Bol–Moufang type identities. Proc. of the Fifth Conf. of Mathematical Society of Moldova, IMCS-55, 2019, Chisinau, 2019, pages 77–84.
[13] Izbash V. I., Shcherbacov V. A.: On quasigroups with Moufang identity. in Abstracts of The Third International Conf. in memory of M. I. Kargapolov (1928-1976), Krasnoyarsk, 1993, pages 134–135 (Russian). MR 1788977 | Zbl 1027.20507
[14] Jaíyéolá T. G., Ilojide E., Olatinwo M. O., Smarandache F.: On the classification of Bol–Moufang type of some varieties of quasi neutrosophic triplet loop (Fenyves BCI-Algebras). Symmetry 10 (2018), 427, 16 pages. DOI 10.3390/sym10100427 | MR 4022405
[15] Kinyon M., Kunen K.: The structure of extra loops. Quasigroups Related Systems 12 (2004), 39–60. MR 2130578
[16] Kunen K.: Moufang quasigroups. J. Algebra 183 (1996), no. 1, 231–234. DOI 10.1006/jabr.1996.0216 | MR 1397396
[17] Kunen K.: Quasigroups, loops and associative laws. J. Algebra 185 (1996), no. 1, 194–204. DOI 10.1006/jabr.1996.0321 | MR 1409983
[18] Kuroš A. G.: Theory of Groups. Nauka, Moscow, 1967 (Russian). MR 0249495
[19] McCune W.: Prover9 and Mace4. University of New Mexico, www.cs.unm.edu/̴ mccune/prover9, 2005–2010.
[20] Pflugfelder H. O.: Quasigroups and Loops: Introduction. Sigma Series in Pure Mathematics, 7, Heldermann, Berlin, 1990. MR 1125767 | Zbl 0715.20043
[21] Scerbacova A. V., Shcherbacov V. A.: On spectrum of medial $T_2$-quasigroups. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2(81) (2016), 143–154. MR 3570802
[22] Shcherbacov V.: Elements of Quasigroup Theory and Applications. Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, 2017. MR 3644366
[23] Shcherbacov V., Izbash V.: On quasigroups with Moufang identity. Bul. Acad. Ştiinţe Repub. Mold. Mat. 2 (1998), 109–116, 133, 138. MR 1788977 | Zbl 1027.20507
Partner of
EuDML logo