[3] Barndorff-Nielsen, O.:
Information and Exponential Families in Statistical Theory. Wiley, 1978.
MR 0489333 |
Zbl 1288.62007
[7] Matúš, F.: Maximization of information divergences from binary i.i.d. sequences. In: Proc. IPMU 2 (2004), 1303-1306.
[8] Matúš, F.:
Optimality conditions for maximizers of the information divergence from an exponential family. Kybernetika 43 (2007), 731-746.
MR 2376334
[9] Matúš, F.:
Divergence from factorizable distributions and matroid representations by partitions. IEEE Trans. Inform. Theory 55 (2009), 5375-5381.
DOI 10.1109/tit.2009.2032806 |
MR 2597169
[10] Matúš, F., Ay, N.: On maximization of the information divergence from an exponential family. In: Proc. WUPES 2003, University of Economics, Prague 2003, pp. 199-204.
[11] Matúš, F., Csiszár, I.:
Generalized minimizers of convex integral functionals, Bregman distance, Pythagorean identities. Kybernetika 48 (2012), 637-689.
MR 3013394
[12] Matúš, F., Rauh, J.:
Maximization of the information divergence from an exponential family and criticality. In: Proc. IEEE International Symposium on Information Theory (ISIT2011), 2011.
DOI 10.1109/isit.2011.6034269 |
MR 2817016
[13] Montúfar, G., Rauh, J., Ay, N.: Expressive power and approximation errors of Restricted Boltzmann Machines. In: Proc. NIPS 2011.
[14] Montúfar, G., Rauh, J., Ay, N.:
Maximal information divergence from statistical models defined by neural networks. In: Proc. GSI, 2013, pp. 759-766.
DOI 10.1007/978-3-642-40020-9\_85
[16] Rauh, J.:
Finding the Maximizers of the Information Divergence from an Exponential Family. Ph.D. Dissertation, Universität Leipzig, 2011.
MR 2817016
[18] Wang, N., Rauh, J., Massam, H.:
Approximating faces of marginal polytopes in discrete hierarchical models. Ann. Statist. 47 (2019), 1203-1233.
DOI 10.1214/18-aos1710 |
MR 3911110