[1] Adams R. A., Fournier J. J. F.:
Sobolev Spaces. Pure and Applied Mathematics (Amsterdam), 140, Elsevier Academic Press, Amsterdam, 2003.
MR 2424078 |
Zbl 1098.46001
[2] Arriagada W., Huentutripay J.:
Blow-up rates of large solutions for a $\phi$-Laplacian problem with gradient term. Proc. Roy. Soc. Edinburgh Sect. A 144 (2014), no. 4, 669–689.
MR 3233749
[3] Arriagada W., Huentutripay J.:
Characterization of a homogeneous Orlicz space. Electron. J. Differential Equations 2017 (2017), Paper No. 49, 17 pages.
MR 3625929
[4] Arriagada W., Huentutripay J.:
Regularity, positivity and asymptotic vanishing of solutions of a $\phi$-Laplacian. An. Ştiinţ. Univ. “Ovidius” Constanţa Ser. Mat. 25 (2017), no. 3, 59–72.
MR 3747154
[5] Brezis H.:
Analyse fonctionnelle. Théorie et applications. Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983 (French).
MR 0697382
[8] Drábek P., Manásevich R.:
On the closed solution to some nonhomogeneous eigenvalue problems with $p$-Laplacian. Differential Integral Equations 12 (1999), no. 6, 773–788.
MR 1728030
[12] Fukagai N., Ito M., Narukawa K.:
Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on ${\mathbb{R}}^N$. Funkcial. Ekvac. 49 (2006), no. 2, 235–267.
DOI 10.1619/fesi.49.235 |
MR 2271234
[13] Garcia Azorero J. P., Peral Alonso I.:
Existence and nonuniqueness for the $p$-Laplacian: nonlinear eigenvalues. Comm. Partial Differential Equations 12 (1987), no. 12, 1389–1403.
MR 0912211
[14] García-Huidobro M., Le V. K., Manásevich R., Schmitt K.:
On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting. NoDEA Nonlinear Differential Equations Appl. 6 (1999), no. 2, 207–225.
DOI 10.1007/s000300050073 |
MR 1694787
[16] Gossez J.-P.:
Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems. Nonlinear Analysis, Function Spaces and Applications, Proc. Spring School, Horni Bradlo, 1978, Teubner, Leipzig, 1979, pages 59–94.
MR 0578910
[17] Gossez J.-P., Manásevich R.:
On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), no. 4, 891–909.
MR 1926921
[18] Huentutripay J., Manásevich R.:
Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz–Sobolev spaces. J. Dynam. Differential Equations 18 (2006), no. 4, 901–921.
DOI 10.1007/s10884-006-9049-7 |
MR 2263407
[19] Krasnosel'skiĭ M. A., Rutic'kiĭ Ja. B.: Convex Functions and Orlicz Spaces. Noordhoff, Groningen, 1961.
[20] Lang S.:
Real and Functional Analysis. Graduate Texts in Mathematics, 142, Springer, New York, 1993.
MR 1216137 |
Zbl 0831.46001
[21] Lê A.:
Eigenvalue problems for the $p$-Laplacian. Nonlinear Anal. 64 (2006), no. 5, 1057–1099.
MR 2196811
[22] Lieberman G. M.:
The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations. Comm. Partial Differential Equations 16 (1991), no. 2–3, 311–361.
DOI 10.1080/03605309108820761 |
MR 1104103
[25] Mihăilescu M., Rădulescu V.:
On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent. Proc. Amer. Math. Soc. 135 (2007), no. 9, 2929–2937.
DOI 10.1090/S0002-9939-07-08815-6 |
MR 2317971
[26] Mihăilescu M., Rădulescu V.:
Eigenvalue problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces. Anal. Appl. (Singap.) 6 (2008), no. 1, 83–98.
DOI 10.1142/S0219530508001067 |
MR 2380887
[27] Mihăilescu M., Rădulescu V., Repovš D.:
On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting. J. Math. Pures Appl. (9) 93 (2010), no. 2, 132–148.
DOI 10.1016/j.matpur.2009.06.004 |
MR 2584738
[28] Mustonen V., Tienari M.:
An eigenvalue problem for generalized Laplacian in Orlicz–Sobolev spaces. Proc. Roy. Soc. Edinburgh A 129 (1999), no. 1, 153–163.
MR 1669197
[29] Pick L., Kufner A., John O., Fučík S.:
Function Spaces. Vol. 1, De Gruyter Series in Nonlinear Analysis and Applications, 14, Walter de Gruyter, Berlin, 2013.
MR 3024912
[30] Rădulescu V. D.:
Nonlinear elliptic equations with variable exponent: old and new. Nonlinear Anal. 121 (2015), 336–369.
MR 3348928