[3] Berry M. V.:
Distribution of modes in fractal resonators. Structural Stability in Physics, Proc. Internat. Symposia Appl. Catastrophe Theory and Topological Concepts in Phys., Inst. Inform. Sci., Univ. Tübingen, 1978, Springer Ser. Synergetics, 4, Springer, Berlin, 1979, pages 51–53.
DOI 10.1007/978-3-642-67363-4_7 |
MR 0556688
[4] Berry M. V.:
Some geometric aspects of wave motion: wavefront dislocations, diffraction catastrophes, diffractals. Geometry of the Laplace operator, Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979, Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, 1980, pages 13–28.
MR 0573427
[5] Biggs N.:
Algebraic Graph Theory. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1993.
MR 1271140 |
Zbl 0797.05032
[6] Ehnes T.: Stochastic heat equations defined by fractal Laplacians on Cantor-like sets. available at arXiv: 1902.02175v2 [math.PR] (2019), 27 pages.
[8] Freiberg U.:
A survey on measure geometric Laplacians on Cantor like sets. Wavelet and fractal methods in science and engineering, Part I., Arab. J. Sci. Eng. Sect. C Theme Issues 28 (2003), no. 1, 189–198.
MR 2030736
[12] Fujita T.:
A fractional dimension, self-similarity and a generalized diffusion operator. Probabilistic Methods in Mathematical Physics, Katata/Kyoto, 1985, Academic Press, Boston, 1987, pages 83–90.
MR 0933819
[13] Gordon C., Webb D., Wolpert S.:
Isospectral plane domains and surfaces via Riemannian orbifolds. Invent. Math. 110 (1992), no. 1, 1–22.
DOI 10.1007/BF01231320 |
MR 1181812
[15] Jin X.: Spectral representation of one-dimensional Liouville Brownian motion and Liouville Brownian excursion. available at arXiv: 1705.01726v1 [math.PR] (2017), 23 pages.
[16] Kac I. S., Kreĭn M. G.:
Criteria for the discreteness of the spectrum of a singular string. Izv. Vysš. Učebn. Zaved. Matematika 1958 (1958), no. 2 (3), 136–153.
MR 0139804
[18] Kesseböhmer M., Niemann A., Samuel T., Weyer H.: Generalised Kreĭn–Feller operators and Liouville Brownian motion via transformations of measure spaces. available at arXiv:1909.08832v2 [math.FA], (2019), 13 pages.
[20] Kesseböhmer M., Samuel T., Weyer H.:
Measure-geometric Laplacians for discrete distributions. Horizons of Fractal Geometry and Complex Dimensions, Contemp. Math., 731, Amer. Math. Soc., Providence, 2019, pages 133–142.
DOI 10.1090/conm/731/14676 |
MR 3989819
[21] Kigami J., Lapidus M. L.:
Self-similarity of volume measures for Laplacians on p.c.f. self-similar fractals. Comm. Math. Phys. 217 (2001), no. 1, 165–180.
DOI 10.1007/s002200000326 |
MR 1815029
[22] Kotani S., Watanabe S.:
Kreĭn's spectral theory of strings and generalized diffusion processes. Functional analysis in Markov Processes, Katata/Kyoto, 1981, Lecture Notes in Math., 923, Springer, Berlin, 1982, pages 235–259.
MR 0661628
[23] Lapidus M. L.:
Fractal drum, inverse spectral problems for elliptic operators and a partial resolution of the Weyl–Berry conjecture. Trans. Amer. Math. Soc. 325 (1991), no. 2, 465–529.
DOI 10.1090/S0002-9947-1991-0994168-5 |
MR 0994168
[24] Lapidus M. L.:
Vibrations of fractal drums, the Riemann hypothesis, waves in fractal media and the Weyl–Berry conjecture. Ordinary and Partial Differential Equations, Vol. IV, Dundee, 1992, Pitman Res. Notes Math. Ser., 289, Longman Sci. Tech., Harlow, 1993, pages 126–209.
MR 1234502
[25] Lapidus M. L., Pomerance C.:
Fonction zêta de Riemann et conjecture de Weyl–Berry pour les tambours fractals. C. R. Acad. Sci. Paris Sér. I Math. 310 (1990), no. 6, 343–348 (French. English summary).
MR 1046509
[26] Lapidus M. L., Pomerance C.:
The Riemann zeta-function and the one-dimensional Weyl–Berry conjecture for fractal drums. Proc. London Math. Soc. (3) 66 (1993), no. 1, 41–69.
MR 1189091
[27] Lapidus M. L., Pomerance C.:
Counterexamples to the modified Weyl–Berry conjecture on fractal drums. Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 1, 167–178.
DOI 10.1017/S0305004100074053 |
MR 1356166
[29] Reed M., Simon B.:
Methods of Modern Mathematical Physics. I. Functional analysis, Academic Press, Harcourt Brace Jovanovich Publishers, New York, 1980.
MR 0493421
[31] Urakawa H.:
Bounded domains which are isospectral but not congruent. Ann. Sci. École Norm. Sup. (4) 15 (1982), no. 3, 441–456.
DOI 10.24033/asens.1433 |
MR 0690649
[32] Weyl H.:
Über die Abhängigkeit der Eigenschwingungen einer Membran und deren Begrenzung. J. Reine Angew. Math. 141 (1912), 1–11 (German).
MR 1580843