Previous |  Up |  Next

Article

Keywords:
Hopf algebra; quantum group; covariant first order differential calculus; quantized calculus; Dirac operator
Summary:
We introduce a method for construction of a covariant differential calculus over a Hopf algebra $A$ from a quantized calculus $da=[D,a]$, $a\in A$, where $D$ is a candidate for a Dirac operator for $A$. We recover the method of construction of a bicovariant differential calculus given by T. Brzeziński and S. Majid created from a central element of the dual Hopf algebra $A^\circ $. We apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by S. Majid. We find that the differential calculus obtained by our method is the standard bicovariant 4D-calculus. We also apply this method to the Dirac operator for the quantum $\rm SL(2)$ given by P. N. Bibikov and P. P. Kulish and show that the resulted differential calculus is $8$-dimensional.
References:
[1] Bibikov, P. N., Kulish, P. P.: Dirac operators on the quantum group ${\rm SU}(2)$ and the quantum sphere. J. Math. Sci., New York 100 (1997), 2039-2050. DOI 10.1007/BF02675726 | MR 1627837 | Zbl 0954.58004
[2] Brzeziński, T., Majid, S.: A class of bicovariant differential calculi on Hopf algebras. Lett. Math. Phys. 26 (1992), 67-78. DOI 10.1007/BF00420519 | MR 1193627 | Zbl 0776.58005
[3] Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994). MR 1303779 | Zbl 0818.46076
[4] Klimyk, A., Schmüdgen, K.: Quantum Groups and Their Representations. Texts and Monographs in Physics. Springer, Berlin (1997). DOI 10.1007/978-3-642-60896-4 | MR 1492989 | Zbl 0891.17010
[5] Majid, S.: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (1995). DOI 10.1017/CBO9780511613104 | MR 1381692 | Zbl 0857.17009
[6] Majid, S.: Riemannian geometry of quantum groups and finite groups with nonuniversal differentials. Commun. Math. Phys. 225 (2002), 131-170. DOI 10.1007/s002201000564 | MR 1877313 | Zbl 0999.58004
[7] Woronowicz, S. L.: Differential calculus on compact matrix pseudogroups (quantum groups). Commun. Math. Phys. 122 (1989), 125-170. DOI 10.1007/BF01221411 | MR 0994499 | Zbl 0751.58042
Partner of
EuDML logo