[2] Agore, A. L.:
Hopf algebras which factorize through the Taft algebra $T_{m^{2}}(q)$ and the group Hopf algebra $K[C_{n}]$. SIGMA, Symmetry, Integrability Geom. Methods Appl. 14 (2018), Article ID 027.
DOI 10.3842/SIGMA.2018.027 |
MR 3778923 |
Zbl 1414.16027
[8] Kats, G. I., Palyutkin, V. G.:
Finite ring groups. Trans. Mosc. Math. Soc. 15 (1966), 251-294 translation from Tr. Mosk. Mat. O.-va 15 1966 224-261.
MR 0208401 |
Zbl 0218.43005
[11] Maillet, E.:
Sur les groupes échangeables et les groupes décomposables. Bull. Soc. Math. Fr. 28 (1900), 7-16 French \99999JFM99999 31.0144.02.
DOI 10.24033/bsmf.617 |
MR 1504357
[15] Pansera, D.:
A class of semisimple Hopf algebras acting on quantum polynomial algebras. Rings, Modules and Codes Contemporary Mathematics 727, American Mathematical Society, Providence (2019), 303-316.
DOI 10.1090/conm/727 |
MR 3938158 |
Zbl 07120022
[21] Zappa, G.:
Sulla costruzione dei gruppi prodotto di due dati sottogruppi permutabili tra loro. Atti 2. Congr. Un. Mat. Ital., Bologna 1940 (1942), 119-125 Italian.
MR 0019090 |
Zbl 0026.29104