When is the order generated by a cubic, quartic or quintic algebraic unit Galois invariant: three conjectures.
(English).Czechoslovak Mathematical Journal,
vol. 70
(2020),
issue 4,
pp. 905-919
Keywords: unit; algebraic integer; cubic field; quartic field; quintic field
Summary: Let $\varepsilon $ be an algebraic unit of the degree $n\geq 3$. Assume that the extension ${\mathbb Q}(\varepsilon )/{\mathbb Q}$ is Galois. We would like to determine when the order ${\mathbb Z}[\varepsilon ]$ of ${\mathbb Q}(\varepsilon )$ is ${\rm Gal}({\mathbb Q}(\varepsilon )/{\mathbb Q})$-invariant, i.e. when the $n$ complex conjugates $\varepsilon _1,\cdots ,\varepsilon _n$ of $\varepsilon $ are in ${\mathbb Z}[\varepsilon ]$, which amounts to asking that ${\mathbb Z}[\varepsilon _1,\cdots ,\varepsilon _n]={\mathbb Z}[\varepsilon ]$, i.e., that these two orders of ${\mathbb Q}(\varepsilon )$ have the same discriminant. This problem has been solved only for $n=3$ by using an explicit formula for the discriminant of the order ${\mathbb Z}[\varepsilon _1,\varepsilon _2,\varepsilon _3]$. However, there is no known similar formula for $n>3$. In the present paper, we put forward and motivate three conjectures for the solution to this determination for $n=4$ (two possible Galois groups) and $n=5$ (one possible Galois group). In particular, we conjecture that there are only finitely many cyclic quartic and quintic Galois-invariant orders generated by an algebraic unit. As a consequence of our work, we found a parametrized family of monic quartic polynomials in ${\mathbb Z}[X]$ whose roots $\varepsilon $ generate bicyclic biquadratic extensions ${\mathbb Q}(\varepsilon )/{\mathbb Q}$ for which the order ${\mathbb Z}[\varepsilon ]$ is ${\rm Gal}({\mathbb Q}(\varepsilon )/{\mathbb Q})$-invariant and for which a system of fundamental units of ${\mathbb Z}[\varepsilon ]$ is known. According to the present work it should be difficult to find other similar families than this one and the family of the simplest cubic fields.
[2] Cox, D. A.: Galois Theory. Pure and Applied Mathematics. A Wiley-Interscience Series of Texts, Monographs, and Tracts, John Wiley & Sons, Chichester (2004). DOI 10.1002/9781118033081 | MR 2119052 | Zbl 1057.12002
[3] Kappe, L.-C., Warren, B.: An elementary test for the Galois group of a quartic polynomial. Am. Math. Mon. 96 (1989), 133-137. DOI 10.2307/2323198 | MR 0992075 | Zbl 0702.11075
[4] Lee, J. H., Louboutin, S. R.: On the fundamental units of some cubic orders generated by units. Acta Arith. 165 (2014), 283-299. DOI 10.4064/aa165-3-7 | MR 3263953 | Zbl 1307.11120
[5] Lee, J. H., Louboutin, S. R.: Determination of the orders generated by a cyclic cubic unit that are Galois invariant. J. Number Theory 148 (2015), 33-39. DOI 10.1016/j.jnt.2014.09.031 | MR 3283165 | Zbl 1394.11073
[9] Louboutin, S. R.: Fundamental units for orders generated by a unit. Publ. Math. Besançon, Algèbre et Théorie des Nombres Presses Universitaires de Franche-Comté, Besançon (2015), 41-68. MR 3525537 | Zbl 1414.11146
[10] Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers. Springer Monographs in Mathematics, Springer, Berlin; PWN-Polish Scientific Publishers, Warszawa (1990). DOI 10.1007/978-3-662-07001-7 | MR 1055830 | Zbl 0717.11045