Previous |  Up |  Next

Article

Keywords:
time-ordering; matrix differential equation; time-ordered exponential; Lanczos algorithm; fundamental solution
Summary:
The time-ordered exponential of a time-dependent matrix $\mathsf {A}(t)$ is defined as the function of $\mathsf {A}(t)$ that solves the first-order system of coupled linear differential equations with non-constant coefficients encoded in $\mathsf {A}(t)$. The authors have recently proposed the first Lanczos-like algorithm capable of evaluating this function. This algorithm relies on inverses of time-dependent functions with respect to a non-commutative convolution-like product, denoted by $\ast $. Yet, the existence of such inverses, crucial to avoid algorithmic breakdowns, still needed to be proved. Here we constructively prove that $\ast $-inverses exist for all non-identically null, smooth, separable functions of two variables. As a corollary, we partially solve the Green's function inverse problem which, given a distribution $G$, asks for the differential operator whose fundamental solution is $G$. Our results are abundantly illustrated by examples.
References:
[1] Benner, P., Cohen, A., Ohlberger, M., (eds.), K. Willcox: Model Reduction and Approximation: Theory and Algorithms. Computational Science & Engineering 15. SIAM, Philadelphia (2017). DOI 10.1137/1.9781611974829 | MR 3672144 | Zbl 1378.65010
[2] Blanes, S.: High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numer. Algorithms 69 (2015), 271-290. DOI 10.1007/s11075-014-9894-0 | MR 3350382 | Zbl 1317.65144
[3] Bouhamidi, A.: Pseudo-differential operator associated to the radial basis functions under tension. ESAIM, Proc. 20 (2007), 72-82. DOI 10.1051/proc:072007 | MR 2402761 | Zbl 1359.35233
[4] Corless, M. J., Frazho, A. E.: Linear Systems and Control: An Operator Perspective. Pure and Applied Mathematics, Marcel Dekker 254. Marcel Dekker, New York (2003). DOI 10.1201/9780203911372 | Zbl 1050.93001
[5] Fasshauer, G. E., Ye, Q.: Reproducing kernels of Sobolev spaces via a Green kernel approach with differential operators and boundary operators. Adv. Comput. Math. 38 (2013), 891-921. DOI 10.1007/s10444-011-9264-6 | MR 3044643 | Zbl 1267.41018
[6] Giscard, P.-L.: On the solutions of linear Volterra equations of the second kind with sum kernels. (to appear) in J. Integral Equations Appl. Available at https://arxiv.org/abs/1909.04033v2 (2020), 25 pages.
[7] Giscard, P.-L., Lui, K., Thwaite, S. J., Jaksch, D.: An exact formulation of the time-ordered exponential using path-sums. J. Math. Phys. 56 (2015), Article ID 053503, 18 pages. DOI 10.1063/1.4920925 | MR 3391006 | Zbl 1316.15010
[8] Giscard, P.-L., Pozza, S.: Lanczos-like method for the time-ordered exponential. Available at https://arxiv.org/abs/1909.03437 (2019), 26 pages. MR 4191370
[9] Giscard, P.-L., Pozza, S.: Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method. Available at https://arxiv.org/abs/2002.06973 (2020), 23 pages.
[10] Golub, G. H., Meurant, G.: Matrices, moments and quadrature. Numerical Analysis 1993 Pitman Research Notes in Mathematics Series 303. Longman Scientific & Technical, Harlow (1994), 105-156. MR 1267758 | Zbl 0795.65019
[11] Golub, G. H., Meurant, G.: Matrices, Moments and Quadrature With Applications. Princeton Series in Applied Mathematics 30. Princeton University Press, Princeton (2010). DOI 10.1515/9781400833887 | MR 2582949 | Zbl 1217.65056
[12] Gripenberg, G., Londen, S.-O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Applications 34. Cambridge University Press, Cambridge (1990). DOI 10.1017/CBO9780511662805 | MR 1050319 | Zbl 0695.45002
[13] Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems. Wiley-Interscience, New York (1972). MR 0406607 | Zbl 0276.93001
[14] Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013). DOI 10.1093/acprof:oso/9780199655410.001.0001 | MR 3024841 | Zbl 1307.65001
[15] Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM Studies in Applied Mathematics 7. SIAM, Philadelphia (1985). DOI 10.1137/1.9781611970852 | MR 0796318 | Zbl 0566.65094
[16] Mehring, M., Weberruss, V. A.: Object-Oriented Magnetic Resonance: Classes and Objects, Calculations and Computations. Academic Press, London (2012). DOI 10.1016/C2009-0-21093-2
[17] Polyanin, A. D., Manzhirov, A. V.: Handbook of Integral Equations. Chapman & Hall/CRC Press, Boca Raton (2008). DOI 10.1201/9781420010558 | MR 2404728 | Zbl 1154.45001
[18] Razdolsky, L.: Integral Volterra equations. Probability Based High Temperature Engineering Springer, Cham (2017), 55-100. DOI 10.1007/978-3-319-41909-1_2
[19] Reid, W. T.: Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems. Pac. J. Math. 13 (1963), 665-685. DOI 10.2140/pjm.1963.13.665 | MR 0155049 | Zbl 0119.07401
[20] Rivas, Á., Huelga, S. F.: Open Quantum Systems: An Introduction. SpringerBriefs in Physics. Springer, Berlin (2012). DOI 10.1007/978-3-642-23354-8 | MR 2848650 | Zbl 1246.81006
[21] Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003). DOI 10.1137/1.9780898718003 | MR 1990645 | Zbl 1031.65046
[22] Schwartz, L.: Théorie des distributions. Publications de l'Institut de Mathématique de l'Université de Strasbourg IX-X. Hermann, Paris (1966), French. MR 0209834 | Zbl 0149.09501
[23] Sezer, M.: Taylor polynomial solutions of Volterra integral equations. Int. J. Math. Educ. Sci. Technol. 25 (1994), 625-633. DOI 10.1080/0020739940250501 | MR 1295324 | Zbl 0823.45005
[24] Tricomi, F. G.: Integral Equations. Dover Publications, New York (1985). MR 0809184 | Zbl 0078.09404
Partner of
EuDML logo