[4] Bisztriczky, T., McMullen, P., Schneider, R., (eds.), A. I. Weiss:
Polytopes: Abstract, Convex and Computational. NATO ASI Series. Series C. Mathematical and Physical Sciences 440. Kluwer Academic Publishers, Dordrecht (1994).
DOI 10.1007/978-94-011-0924-6 |
MR 1322054 |
Zbl 0797.00016
[7] Brenti, F.:
Log-concave and unimodal sequences in algebra, combinatorics, and geometry: An update. Jerusalem combinatorics '93 Contemporary Mathematics 178. American Mathematical Society, Providence (1994), 71-89.
DOI 10.1090/conm/178 |
MR 1310575 |
Zbl 0813.05007
[9] Brugallé, E.:
Some aspects of tropical geometry. Eur. Math. Soc. Newsl. 83 (2012), 23-28.
MR 2934649 |
Zbl 1285.14069
[11] Puente, M. J. de la:
On tropical Kleene star matrices and alcoved polytopes. Kybernetika 49 (2013), 897-910.
MR 3182647 |
Zbl 1297.15029
[14] Develin, M., Santos, F., Sturmfels, B.:
On the rank of a tropical matrix. Combinatorial and computational geometry Mathematical Sciences Research Institute Publications 52. Cambridge University Press, Cambridge (2005), 213-242.
MR 2178322 |
Zbl 1095.15001
[15] Develin, M., Sturmfels, B.:
Tropical convexity. Doc. Math. 9 (2004), 1-27 corrigendum ibid. 9 2004 205-206.
MR 2054977 |
Zbl 1054.52004
[18] Henk, M., Richter-Gebert, J., Ziegler, G. M.:
Basic properties of convex polytopes. Handbook of Discrete and Computational Geometry J. E. Goodman et al. CRC Press Series on Discrete Mathematics and Its Applications. CRC Press, Boca Raton (1997), 243-270.
MR 1730169 |
Zbl 0911.52007
[19] Jiménez, A., Puente, M. J. de la:
Six combinatorial clases of maximal convex tropical polyhedra. (2012), 40 pages Available at
https://arxiv.org/abs/1205.4162
[24] Litvinov, G. L., (eds.), V. P. Maslov:
Idempotent Mathematics and Mathematical Physics. Contemporary Mathematics 377. American Mathematical Society, Providence (2005).
DOI 10.1090/conm/377 |
MR 2145152 |
Zbl 1069.00011
[26] Mikhalkin, G.:
What is ... a tropical curve?. Notices Am. Math. Soc. 54 (2007), 511-513.
MR 2305295 |
Zbl 1142.14300
[27] Richter-Gebert, J., Sturmfels, B., Theobald, T.:
First steps in tropical geometry. Idempotent Mathematics and Mathematical Physics Contemporary Mathematics 377. American Mathematical Society, Providence (2005), 289-317.
DOI 10.1090/conm/377 |
MR 2149011 |
Zbl 1093.14080
[31] Sergeev, S.:
Multiorder, Kleene stars and cyclic projectors in the geometry of max cones. Tropical and Idempotent Mathematics Contemporary Mathematics 495. American Mathematical Society, Providence (2009), 317-342.
DOI 10.1090/conm/495 |
MR 2581526 |
Zbl 1179.15033
[35] Stanley, R. P.:
Log-concave and unimodal sequences in algebra, combinatorics, and geometry. Graph Theory and Its Applications: East and West Annals of the New York Academy of Sciences 576. New York Academy of Sciences, New York (1989), 500-535.
DOI 10.1111/j.1749-6632.1989.tb16434.x |
MR 1110850 |
Zbl 0792.05008
[40] Ziegler, G. M.:
Convex polytopes: Extremal constructions and $f$-vector shapes. Geometric Combinatorics IAS/Park City Mathematics Series 13. American Mathematical Society, Providence (2007).
DOI 10.1090/pcms/013/10 |
MR 2383133 |
Zbl 1134.52018