Previous |  Up |  Next

Article

Title: Linear complementarity problems and bi-linear games (English)
Author: Sengodan, Gokulraj
Author: Arumugasamy, Chandrashekaran
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 65
Issue: 5
Year: 2020
Pages: 665-675
Summary lang: English
.
Category: math
.
Summary: In this paper, we define bi-linear games as a generalization of the bimatrix games. In particular, we generalize concepts like the value and equilibrium of a bimatrix game to the general linear transformations defined on a finite dimensional space. For a special type of ${\bf Z}$-transformation we observe relationship between the values of the linear and bi-linear games. Using this relationship, we prove some known classical results in the theory of linear complementarity problems for this type of ${\bf Z}$-transformations. (English)
Keyword: bimatrix game
Keyword: nash equilibrium
Keyword: ${\bf Z}$-transformation
Keyword: semi positive map
MSC: 15A63
MSC: 90C33
MSC: 91A05
idZBL: 07285951
idMR: MR4160787
DOI: 10.21136/AM.2020.0371-19
.
Date available: 2020-09-23T13:50:46Z
Last updated: 2022-11-07
Stable URL: http://hdl.handle.net/10338.dmlcz/148371
.
Reference: [1] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Classics in Applied Mathematics 9. SIAM, Philadelphia (1994). Zbl 0815.15016, MR 1298430, 10.1137/1.9781611971262
Reference: [2] Cottle, R. W., Pang, J.-S., Stone, R. E.: The Linear Complementarity Problem.Computer Science and Scientific Computing. Academic Press, Boston (1992). Zbl 0757.90078, MR 1150683, 10.1137/1.9780898719000
Reference: [3] Ferris, M. C., Pang, J. S.: Engineering and economic applications of complementarity problems.SIAM Rev. 39 (1997), 669-713. Zbl 0891.90158, MR 1491052, 10.1137/S0036144595285963
Reference: [4] Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal minors.Czech. Math. J. 12 (1962), 382-400. Zbl 0131.24806, MR 0142565, 10.21136/CMJ.1962.100526
Reference: [5] Gale, D., Nikaidô, H.: The Jacobian matrix and global univalence of mappings.Math. Ann. 159 (1965), 81-93. Zbl 0158.04903, MR 0204592, 10.1007/BF01360282
Reference: [6] Gowda, M. S., Ravindran, G.: On the game-theoretic value of a linear transformation relative to a self-dual cone.Linear Algebra Appl. 469 (2015), 440-463. Zbl 1309.91008, MR 3299071, 10.1016/j.laa.2014.11.032
Reference: [7] Gowda, M. S., Tao, J.: Z-transformations on proper and symmetric cones.Math. Program. 117 (2009), 195-221. Zbl 1167.90022, MR 2421305, 10.1007/s10107-007-0159-8
Reference: [8] Isac, G.: Complementarity Problems.Lecture Notes in Mathematics 1528. Springer, Berlin (1992). Zbl 0795.90072, MR 1222647, 10.1007/BFb0084653
Reference: [9] Kaneko, I.: A linear complementarity problem with an $n$ by $2n$ ``$P$''-matrix.Math. Program. Study 7 (1978), 120-141. Zbl 0378.90054, MR 0483316, 10.1007/BFb0120786
Reference: [10] Kaneko, I.: Linear complementarity problems and characterizations of Minkowski matrices.Linear Algebra Appl. 20 (1978), 111-129. Zbl 0382.15011, MR 0480554, 10.1016/0024-3795(78)90045-9
Reference: [11] Karamardian, S.: The complementarity problem.Math. Program. 2 (1972), 107-129. Zbl 0247.90058, MR 295762, 10.1007/BF01584538
Reference: [12] Murty, K. G.: Linear Complementarity, Linear and Nonlinear Programming.Sigma Series in Applied Mathematics 3. Heldermann Verlag, Berlin (1988). Zbl 0634.90037, MR 0949214
Reference: [13] Nikaidô, H.: Convex Structures and Economic Theory.Mathematics in Science and Engineering 51. Academic Press, New York (1968). Zbl 0172.44502, MR 0277233, 10.1016/S0076-5392(08)63326-3
Reference: [14] Orlitzky, M. J.: Positive Operators, Z-Operators, Lyapunov Rank, and Linear Games on Closed Convex Cones: Ph.D. Thesis.University of Maryland, Baltimore County (2017). MR 3697664
Reference: [15] Parthasarathy, T., Raghavan, T. E. S.: Some Topics in Two-Person Games.American Elsevier, New York (1971). Zbl 0225.90049, MR 0277260
Reference: [16] Schneider, H., Vidyasagar, M.: Cross-positive matrices.SIAM J. Numer. Anal. 7 (1970), 508-519. Zbl 0245.15008, MR 0277550, 10.1137/0707041
Reference: [17] Varga, R. S.: Matrix Iterative Analysis.Springer Series in Computational Mathematics 27. Springer, Berlin (2000). Zbl 0998.65505, MR 1753713, 10.1007/978-3-642-05156-2
.

Files

Files Size Format View
AplMat_65-2020-5_8.pdf 287.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo