[1] Ahn, H.-S., Moore, K. L., Chen, Y. Q.:
Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems. Communications and Control Engineering. Springer, London (2007),\99999DOI99999 10.1007/978-1-84628-859-3 .
MR 2375210 |
Zbl 1162.93025
[2] Buck, R. C.:
Partition of space. Am. Math. Mon. 50 (1943), 541-544 \99999DOI99999 10.1080/00029890.1943.11991447 .
MR 0009119 |
Zbl 0061.30609
[3] Černý, M., Hladík, M.:
The complexity of computation and approximation of the $t$-ratio over one-dimensional interval data. Comput. Stat. Data Anal. 80 (2014), 26-43 \99999DOI99999 10.1016/j.csda.2014.06.007 .
MR 3240473 |
Zbl 06984073
[4] Collins, G. E.:
Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Quantifier Elimination and Cylindrical Algebraic Decomposition Texts and Monographs in Symbolic Computation. Springer, Wien (1998), 85-121.
DOI 10.1007/978-3-7091-9459-1_4 |
MR 1634190 |
Zbl 0900.03055
[6] Garloff, J., Popova, E. D., Smith, A. P.:
Solving linear systems with polynomial parameter dependency with application to the verified solution of problems in structural mechanics. Optimization, Simulation, and Control Springer Optimization and Its Applications 76. Springer, New York (2013), 301-318.
DOI 10.1007/978-1-4614-5131-0_19 |
MR 3929639 |
Zbl 1311.65033
[7] Garloff, J., Smith, A. P.:
Preface (Special issue on the use of Bernstein polynomials in reliable computing: A centennial anniversary). Reliab. Comput. 17 (2012), i--vii.
MR 3035665
[8] Goldsztejn, A., Neumaier, A.:
On the exponentiation of interval matrices. Reliab. Comput. 20 (2014), 53-72.
MR 3268402
[10] Hartman, D., Hladík, M.:
Tight bounds on the radius of nonsingularity. Scientific Computing, Computer Arithmetic, and Validated Numerics Lecture Notes in Computer Science 9553. Springer, Cham (2016), 109-115.
DOI 10.1007/978-3-319-31769-4_9 |
MR 3516767 |
Zbl 1354.65081
[12] Hartman, D., Hladík, M., Říha, D.:
Computing the spectral decomposition of interval matrices and a study on interval matrix power. Available at
https://arxiv.org/abs/1912.05275
[13] Hladík, M.:
An overview of polynomially computable characteristics of special interval matrices. Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications Studies in Computational Intelligence 835. Springer, Cham (2020), 295-310.
DOI 10.1007/978-3-030-31041-7_16
[14] Hladík, M., Černý, M., Rada, M.:
A new polynomially solvable class of quadratic optimization problems with box constraints. Available at
https://arxiv.org/abs/1911.10877
[15] Kosheleva, O., Kreinovich, V., Mayer, G., Nguyen, H. T.:
Computing the cube of an interval matrix is NP-hard. SAC '05: Proceedings of the 2005 ACM Symposium on Applied Computing, Volume 2 ACM, New York (2005), 1449-1453.
DOI 10.1145/1066677.1067007
[16] Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.:
Computational Complexity and Feasibility of Data Processing and Interval Computations. Applied Optimization 10. Kluwer Academic Publishers, Dordrecht (1998).
DOI 10.1007/978-1-4757-2793-7 |
MR 1491092 |
Zbl 0945.68077
[17] Leroy, R.:
Convergence under subdivision and complexity of polynomial minimization in the simplicial Bernstein basis. Reliab. Comput. 17 (2012), 11-21 \99999MR99999 3008243 .
MR 3008243
[20] Oppenheimer, E. P., Michel, A. N.:
Application of interval analysis techniques to linear systems. II. The interval matrix exponential function. IEEE Trans. Circuits Syst. 35 (1988), 1230-1242.
DOI 10.1109/31.7598 |
MR 0960775
[24] Skalna, I., Hladík, M.:
Direct and iterative methods for interval parametric algebraic systems producing parametric solutions. Numer. Linear Algebra Appl. 26 (2019), Article ID e2229, 24 pages.
DOI 10.1002/nla.2229 |
MR 3946064 |
Zbl 07088855
[25] Tarski, A.:
A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, California (1948).
MR 0028796 |
Zbl 0035.00602