Previous |  Up |  Next

Article

Keywords:
uniqueness; meromorphic function; small function; nonlinear differential polynomial; normal family
Summary:
With the idea of normal family we study the uniqueness of meromorphic functions $f$ and $g$ when $f^{n}(f^{(k)})^{m}-p$ and $g^{n}(g^{(k)})^{m}-p$ share two values, where $p$ is any nonzero polynomial. The result of this paper significantly improves and generalizes the result due to A. Banerjee and S. Majumder (2018).
References:
[1] Alzahary, T. C., Yi, H. X.: Weighted value sharing and a question of I. Lahiri. Complex Variables, Theory Appl. 49 (2004), 1063-1078. DOI 10.1080/02781070410001701074 | MR 2111304 | Zbl 1067.30055
[2] Banerjee, A.: On a question of Gross. J. Math. Anal. Appl. 327 (2007), 1273-1283. DOI 10.1016/j.jmaa.2006.04.078 | MR 2280003 | Zbl 1115.30029
[3] Banerjee, A., Majumder, S.: On certain non-linear differential polynomial sharing a non-zero polynomial. Bol. Soc. Mat. Mex., III. Ser. 24 (2018), 155-180. DOI 10.1007/s40590-016-0156-0 | MR 3773104 | Zbl 1390.30036
[4] Bergweiler, W., Eremenko, A.: On the singularities of the inverse to a meromorphic function of finite order. Rev. Mat. Iberoam. 11 (1995), 355-373. DOI 10.4171/RMI/176 | MR 1344897 | Zbl 0830.30016
[5] Cao, Y.-H., Zhang, X.-B.: Uniqueness of meromorphic functions sharing two values. J. Inequal. Appl. 2012 (2012), Paper No. 100, 10 pages. DOI 10.1186/1029-242X-2012-100 | MR 2946490 | Zbl 1291.30193
[6] Chang, J., Zalcman, L.: Meromorphic functions that share a set with their derivatives. J. Math. Anal. Appl. 338 (2008), 1020-1028. DOI 10.1016/j.jmaa.2007.05.079 | MR 2386477 | Zbl 1160.30014
[7] Chen, H., Fang, M.: The value distribution of $f\sp n f'$. Sci. China, Ser. A 38 (1995), 789-798. MR 1360682 | Zbl 0839.30026
[8] Dou, J., Qi, X.-G., Yang, L.-Z.: Entire functions that share fixed-points. Bull. Malays. Math. Sci. Soc. (2) 34 (2011), 355-367. MR 2788409 | Zbl 1216.30033
[9] Fang, M., Hua, X.: Entire functions that share one value. J. Nanjing Univ., Math. Biq. 13 (1996), 44-48. MR 1411806 | Zbl 0899.30022
[10] Fang, M., Qiu, H.: Meromorphic functions that share fixed-points. J. Math. Anal. Appl. 268 (2002), 426-439. DOI 10.1006/jmaa.2000.7270 | MR 1896207 | Zbl 1030.30028
[11] Hayman, W. K.: Meromorphic Functions. Oxford Mathematical Monographs. Clarendon Press, Oxford (1964). MR 0164038 | Zbl 0115.06203
[12] Köhler, L.: Meromorphic functions sharing zeros and poles and also some of their derivatives sharing zeros. Complex Variables, Theory Appl. 11 (1989), 39-48. DOI 10.1080/17476938908814322 | MR 0998240 | Zbl 0637.30029
[13] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions. Nagoya Math. J. 161 (2001), 193-206. DOI 10.1017/S0027763000027215 | MR 1820218 | Zbl 0981.30023
[14] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions. Complex Variables, Theory Appl. 46 (2001), 241-253. DOI 10.1080/17476930108815411 | MR 1869738 | Zbl 1025.30027
[15] Lahiri, I., Dewan, S.: Inequalities arising out of the value distribution of a differential monomial. JIPAM, J. Inequal. Pure Appl. Math. 4 (2003), Paper No. 27, 6 pages. MR 1994240 | Zbl 1126.30309
[16] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative. Kodai Math. J. 26 (2003), 95-100. DOI 10.2996/kmj/1050496651 | MR 1966685 | Zbl 1077.30025
[17] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing 1-points with weight two. Chin. J. Contemp. Math. 25 (2004), 325-334. MR 2159311 | Zbl 1069.30051
[18] Lin, W., Yi, H. X.: Uniqueness theorems for meromorphic functions concerning fixed-point. Complex Variables, Theory Appl. 49 (2004), 793-806. DOI 10.1080/02781070412331298624 | MR 2097218 | Zbl 1067.30065
[19] Pang, X. C.: Normality conditions for differential polynomials. Kexue Tongbao, Sci. Bull. 33 (1988), 1690-1693. MR 0999887 | Zbl 1382.30060
[20] Schiff, J. L.: Normal Families. Universitext. Springer, New York (1993). DOI 10.1007/978-1-4612-0907-2 | MR 1211641 | Zbl 0770.30002
[21] Xu, J., Yi, H., Zhang, Z.: Some inequalities of differential polynomials. Math. Inequal. Appl. 12 (2009), 99-113. DOI 10.7153/mia-12-09 | MR 2489354 | Zbl 1169.30314
[22] Yamanoi, K.: The second main theorem for small functions and related problems. Acta Math. 192 (2004), 225-294. DOI 10.1007/BF02392741 | MR 2096455 | Zbl 1203.30035
[23] Yang, C. C.: On deficiencies of differential polynomials. II. Math. Z. 125 (1972), 107-112. DOI 10.1007/BF01110921 | MR 0294642 | Zbl 0217.38402
[24] Yang, C.-C., Hua, X.: Uniqueness and value-sharing of meromorphic functions. Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. MR 1469799 | Zbl 0890.30019
[25] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions. Mathematics and Its Applications 557. Kluwer Academic Publishers, Dordrecht (2003). DOI 10.1007/978-94-017-3626-8 | MR 2105668 | Zbl 1070.30011
[26] Yi, H. X.: On characteristic function of a meromorphic function and its derivative. Indian J. Math. 33 (1991), 119-133. MR 1140875 | Zbl 0799.30018
[27] Zalcman, L.: A heuristic principle in complex function theory. Am. Math. Mon. 82 (1975), 813-817. DOI 10.2307/2319796 | MR 0379852 | Zbl 0315.30036
[28] Zhang, J.: Uniqueness theorems for entire functions concerning fixed points. Comput. Math. Appl. 56 (2008), 3079-3087. DOI 10.1016/j.camwa.2008.07.006 | MR 2474563 | Zbl 1165.30362
[29] Zhang, Q.: Meromorphic function that shares one small function with its derivative. JIPAM, J. Inequal. Pure Appl. Math. 6 (2005), Article No. 116, 13 pages. MR 2178297 | Zbl 1097.30033
[30] Zhang, T., Lü, W.: Uniqueness theorems on meromorphic functions sharing one value. Comput. Math. Appl. 55 (2008), 2981-2992. DOI 10.1016/j.camwa.2007.11.029 | MR 2401445 | Zbl 1142.30330
[31] Zhang, X.-Y., Lin, W.-C.: Corrigendum to ``Uniqueness and value-sharing of entire functions''. J. Math. Anal. Appl. 352 (2009), page 971. DOI 10.1016/j.jmaa.2008.10.051 | MR 2501943 | Zbl 1160.30345
Partner of
EuDML logo