Previous |  Up |  Next

Article

Keywords:
group consensus; topology design; multi-agent agreement
Summary:
In this paper, we investigate the grouping behavior of multi-agent systems by exploiting the graph structure. We propose a novel algorithm for designing a network from scratch which yields the desired grouping in a network of agents utilizing a consensus-based algorithm. The proposed algorithm is shown to be optimal in the sense that it consists of the minimum number of links. Furthermore, we examine the effect of adding new vertices and edges to the network on the number of groups formed in the group consensus problem. These results can be further utilized by the network topology designer to restructure the network and achieve the desired grouping. Theoretical results are illustrated with simulation examples.
References:
[1] Alonso-Mora, J., Montijano, E., Nägeli, T., Hilliges, O., Schwager, M., Rus, D.: Distributed multi-robot formation control in dynamic environments. Auton. Robot. 43 (2018), 1079-1100. DOI 10.1007/s10514-018-9783-9
[2] Amelina, N., Fradkov, A., Jiang, Y., Vergados, D. J.: Approximate consensus in stochastic networks with application to load balancing. IEEE Trans. Inform. Theory 61 (2015), 1739-1752. DOI 10.1109/tit.2015.2406323 | MR 3332977
[3] Aragues, R., Cortes, J., Sagues, C.: Distributed consensus on robot networks for dynamically merging feature-based maps. IEEE Trans. Robot. 28 (2012), 840-854. DOI 10.1109/tro.2012.2192012
[4] Cao, Y., Stuart, D., Ren, W., Meng, Z.: Distributed containment control for multiple autonomous vehicles with double-integrator dynamics: Algorithms and experiments. IEEE Trans. Control Syst. Technol. 19, (2011), 929-938. DOI 10.1109/tcst.2010.2053542 | MR 2926750
[5] Chen, Z., Xing, Y., Qin, H.: Multiagent opinion dynamics influenced by individual susceptibility and anchoring effect. Kybernetika 55 (2019), 714-726. DOI 10.14736/kyb-2019-4-0714 | MR 4043544
[6] Choi, H.-L., Brune, L., How, J.: Consensus-based decentralized auctions for robust task allocation. IEEE Trans. Robot. 25 (2009), 912-926. DOI 10.1109/tro.2009.2022423
[7] Develer, Ü., Akar, M.: Cluster consensus in first and second-order continuous-time networks with input and communication delays. Int. J. Control (2019). DOI 10.1080/00207179.2019.1625446
[8] Dimarogonas, D. V., Kyriakopoulos, K. J.: On the rendezvous problem for multiple nonholonomic agents. IEEE Trans. Automat. Control 52 (2007), 916-922. DOI 10.1109/tac.2007.895897 | MR 2324255
[9] Erkan, Ö. F., Cihan, O., Akar, M.: Distributed consensus with multi-equilibria in directed networks. In: 2017 American Control Conference, Seattle 2017. DOI 10.23919/acc.2017.7963678
[10] Erkan, Ö. F., Cihan, O., Akar, M.: Analysis of distributed consensus protocols with multi-equilibria under time-delays. J. Franklin Inst. 355 (2018), 332-360. DOI 10.1016/j.jfranklin.2017.10.028 | MR 3739592
[11] Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: Models, analysis and simulation. J. Artif. Soc. Soc. Simul. 5 (2002).
[12] Hu, J.: Bipartite consensus control of multiagent systems on coopetition networks. Abstr. Appl. Anal. Article ID: 689070 (2014), 1-9. DOI 10.1155/2014/689070 | MR 3226221
[13] Hu, J., Zheng, W.-X.: Emergent collective behaviors on coopetition networks. Phys. Lett. A 378 (2014), 1787-1796. DOI 10.1016/j.physleta.2014.04.070 | MR 3209873
[14] Jin, J., Gans, N.: Collision-free formation and heading consensus of nonholonomic robots as a pose regulation problem. Rob. Auton. Syst. 95 (2017), 25-36. DOI 10.1016/j.robot.2017.05.008
[15] Mirzaei, M., Atrianfar, H., Mehdipour, N., Abdollahi, F.: Asynchronous consensus of continuous-time lagrangian systems with switching topology and non-uniform time delay. Rob. Auton. Syst. 83 (2016), 106-114. DOI 10.1016/j.robot.2016.05.014
[16] Mou, S., Liu, J., Morse, A. S.: A distributed algorithm for solving a linear algebraic equation. IEEE Trans. Automat. Control 60 (2015), 2863-2878. DOI 10.1109/tac.2015.2414771 | MR 3419577
[17] Navarro, I., Matía, F.: Distributed orientation agreement in a group of robots. Auton. Robot. 33 (2012), 445-465. DOI 10.1007/s10514-012-9300-5
[18] Olfati-Saber, R., Murray, R. M.: Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Automat. Control 49 (2004), 1520-1533. DOI 10.1109/tac.2004.834113 | MR 2086916
[19] Ren, W., Beard, R.: Consensus seeking in multiagent systems under dynamically changing interaction topologies. IEEE Trans. Automat. Control 50 (2005), 655-661. DOI 10.1109/tac.2005.846556 | MR 2141568
[20] Schenato, L., Fiorentin, F.: Average TimeSynch: A consensus-based protocol for clock synchronization in wireless sensor networks. Automatica 47 (2011), 1878-1886. DOI 10.1016/j.automatica.2011.06.012 | MR 2886799
[21] Xu, Z., Cai, X.: Group consensus algorithms based on preference relations. Inform. Sci. 181 (2011), 150-162. DOI 10.1016/j.ins.2010.08.002
[22] Yang, S., Tan, S., Xu, J.-X.: Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans. Power Syst. 28 (2013), 4416-4426. DOI 10.1109/tpwrs.2013.2271640
[23] Zelazo, D., Schuler, S., Allgöwer, F.: Performance and design of cycles in consensus networks. Syst. Control. Lett. 62 (2013), 85-96. DOI 10.1016/j.sysconle.2012.10.014 | MR 3016120
[24] Zhang, H.-T., Chen, Z., Mo, X.: Effect of adding edges to consensus networks with directed acyclic graphs. IEEE Trans. Automat. Control 62 (2017), 4891-4897. DOI 10.1109/tac.2017.2692527 | MR 3691919
[25] Zhang, X., Peng, Z., Yang, S., Wen, G., Rahmani, A.: Distributed fixed-time consensus-based formation tracking for multiple nonholonomic wheeled mobile robots under directed topology. Int. J. Control (2019). DOI 10.1080/00207179.2019.1590646
[26] Zhu, Q., Wang, X., Lin, Q.: Consensus-based impact-time-control guidance law for cooperative attack of multiple missiles. Kybernetika 53 (2017), 563-577. DOI 10.14736/kyb-2017-4-0563 | MR 3730252
Partner of
EuDML logo