Previous |  Up |  Next

Article

Keywords:
DoS attack; event-triggered mechanism; cyber-physical system
Summary:
This paper addresses event-triggered control cyber-physical systems under asynchronous denial of service attacks. First, a general attack model is given, which allows us to conveniently model the asynchronous denial of service attacks within measurement and control channels in a unified framework. Then, under a delicate event triggered communication mechanism, a refined switching control mechanism is proposed to account for various attack intervals and non-attack intervals. Furthermore, sufficient conditions are derived for guaranteing the input to state stability (ISS) of the resulting closed-loop system. Finally, a simulation example of unmanned ground vehicle (UGV) is given to demonstrate the validity of the proposed main results.
References:
[1] Amin, S., Schwartz, G. A., Sastry, S.: Security of interdependent and identical networked control systems. Automatica 49 (2013), 186-192. DOI 10.1016/j.automatica.2012.09.007 | MR 2999960
[2] Cardenas, A. A., Amin, S., al, S. Sastry et: Secure control: Towards survivable cyber-physical systems. In: Proc. 28th International Conference on Distributed Computing Systems Workshops, Beijing 2008, pp. 495-500. DOI 10.1109/icdcs.workshops.2008.40
[3] Cetinkaya, A., Ishii, H., Hayakawa, T.: Networked control under random and malicious packet losses. IEEE Trans. Automat. Control 62 (2017), 2434-2449. DOI 10.1109/tac.2016.2612818 | MR 3641456
[4] Chang, Y. H., Hu, Q., Qie, Tomlin, C. J.: Secure estimation based Kalman filter for cyber-physical systems against sensor attacks. Automatica 95 (2018), 399-412. DOI 10.1016/j.automatica.2018.06.010 | MR 3851476
[5] Ding, D., Han, Q.-L., al, Z. Wang et: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 2483-2499. DOI 10.1109/tii.2019.2905295
[6] Farwell, J. P., Rohozinski, R.: Stuxnet and the future of cyber war. Survival 53 (2011), 23-40. DOI 10.1080/00396338.2011.555586
[7] Feng, S., Tesi, P.: Resilient control under denial-of-service: Robust design. Automatica 79 (2017), 42-51. DOI 10.1016/j.automatica.2017.01.031 | MR 3627964
[8] Ge, X., Han, Q.-L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 49 (2019), 1148-1159. DOI 10.1109/tcyb.2017.2789296
[9] Ge, X., Han, Q.-L., al, X.-M. Zhang et: Distributed event-triggered estimation over sensor networks: A survey. IEEE Trans. Cybernet. 50 (2019), 3, 1306-1320 DOI 10.1109/tcyb.2019.2917179
[10] Ge, X., Han, Q.-L., Zhong, M., Zhang, X.-M.: Distributed Krein space-based attack detection over sensor networks under deception attacks. Automatica 109 (2019), 108557. DOI 10.1016/j.automatica.2019.108557 | MR 3998774
[11] Heemels, W. P. M. H., Donkers, M. C. F., Teel, A. R.: Periodic event-triggered control for linear systems. IEEE Trans. Automat. Control 58 (2013), 847-861. DOI 10.1109/tac.2012.2220443 | MR 3038789
[12] Hu, S., Yue, D., al, Q.-L. Han et: Observer-based event-triggered control for networked linear systems subject to denial-of-service attacks. IEEE Trans. Cybernet. (2019), 1-13. DOI 10.1109/tcyb.2019.2903817 | MR 3632431
[13] Hu, S., Yue, D., Xie, X., Chen, X., Yin, X.: Resilient event-triggered controller synthesis of networked control systems under periodic DoS jamming attacks. IEEE Trans. Cybernet. 49 (2019), 4271-4281. DOI 10.1109/tcyb.2018.2861834
[14] Kim, S., Won, Y., Park, I.-H., Eun, Y., Park, K.-J.: Cyber-physical vulnerability analysis of communication-based train control. IEEE Internet Things J. 6 (2019), 6353-6362. DOI 10.1109/jiot.2019.2919066
[15] Kwon, Ch., Hwang, I.: Cyber attack mitigation for cyber-physical systems: hybrid system approach to controller design. IET Control Theory Appl. 10 (2016), 731-741. DOI 10.1049/iet-cta.2014.1013 | MR 3525310
[16] Liang, G., Weller, S. R., Zhao, J., Luo, F., Dong, Z. Y.: The 2015 Ukraine blackout: Implications for false data injection attacks. IEEE Trans. Power Syst. 32 (2017), 3317-3318. DOI 10.1109/tpwrs.2016.2631891
[17] Liu, J., Yang, M., al, X. Xie et: Finite-time ${H}_\infty$ filtering for state-dependent uncertain systems with event-triggered mechanism and multiple attacks. IEEE Trans. Circuits Systems I: Regular Papers /2019), 1-14.. MR 4086773
[18] Lu, A.-Y., Yang, G.-H.: Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans. Automat. Control 63 (2018), 1813-1820. DOI 10.1109/tac.2017.2751999 | MR 3807663
[19] Millan, P., Orihuela, L., al, I. Jurado et: Distributed estimation in networked systems under periodic and event-based communication policies. Int. J. Systems Sci. 46 (2015), 139-151. DOI 10.1080/00207721.2013.775387 | MR 3268947
[20] Peng, C., Sun, H. T.: Switching-like event-triggered control for networked control systems under malicious denial of service attacks. IEEE Trans. Automat. Control (2020) DOI 10.1109/tac.2020.2989773 | MR 4083387
[21] Mo, Y., Weerakkody, S., Sinopoli, B.: Physical authentication of control systems: Designing watermarked control inputs to detect counterfeit sensor outputs. IEEE Control Systems Mag. 35 (2015), 93-109. DOI 10.1109/mcs.2014.2364724 | MR 3311291
[22] Muehlebach, M., Trimpe, S.: Distributed event-based state estimation for networked systems: An LMI approach. IEEE Trans. Automat. Control 63 (2018), 269-276. DOI 10.1109/tac.2017.2726002 | MR 3744847
[23] Pasqualetti, F., Dorfler, F., Bullo, F.: Attack detection and identification in cyber-physical systems. IEEE Trans. Automat. Control 58 (2013), 2715-2729. DOI 10.1109/tac.2013.2266831 | MR 3125984
[24] Peng, C., Li, J., Fei, M.: Resilient event-triggering $H_\infty$ load frequency control for multi-area power systems with energy-limited DoS attacks. IEEE Trans. Power Syst. 32 (2017), 4110-4118. DOI 10.1109/tpwrs.2016.2634122
[25] Peng, C., Ma, S., Xie, X.: Observer-based non-PDC control for networked T-S fuzzy systems with an event-triggered Communication. IEEE Trans. Cybernet. 47 (2017), 2279-2287. DOI 10.1109/tcyb.2017.2659698
[26] Peng, C., Sun, H., Yang, M., Wang, Y.: A survey on security communication and control for smart grids under malicious cyber attacks. IEEE Trans. Systems Man Cybernet.: Systems 49 (2019), 1554-1569. DOI 10.1109/tsmc.2018.2884952 | MR 0697005
[27] Persis, C. de, Tesi, P.: Input-to-state stabilizing control under denial-of-service. IEEE Trans. Automat. Control 60 (2015), 2930-2944. DOI 10.1109/tac.2015.2416924 | MR 3419582
[28] Seuret, A., Gouaisbaut, F.: Wirtinger-based integral inequality: Application to time-delay systems. Automatica 49 (2013), 2860-2866. DOI 10.1016/j.automatica.2013.05.030 | MR 3084475
[29] Sun, Y.-Ch., Yang, G.-H.: Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks. Inform. Sci. 465 (2018), 340-352. DOI 10.1016/j.ins.2018.07.030 | MR 3846182
[30] Tabuada, P.: Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Automat. Control 52 (2007), 1680-1685. DOI 10.1109/tac.2007.904277 | MR 2352444
[31] Do, L. Van, Fillatre, L., al, I. Nikiforov et: Security of SCADA systems against cyber-physical attacks. IEEE Aerospace Electron. Systems Mag. 32 (2017), 28-45. DOI 10.1109/maes.2017.160047
[32] Xiaon, S., Han, Q.-L., Ge, X., Zhang, Y.: Secure distributed finite-time filtering for positive systems over sensor networks under deception attacks. IEEE Trans. Cybernet. 50 (2019), 3, 1220-1229. DOI 10.1109/tcyb.2019.2900478
[33] Xie, X., Yue, D., Peng, Ch.: Relaxed real-time scheduling stabilization of discrete-time takagi-sugeno fuzzy systems via a alterable-weights-based ranking switching mechanism. IEEE Trans. Cybernet. 26 (2018), 3808-3819. DOI 10.1109/tfuzz.2018.2849701
[34] Zhang, X.-M., Han, Q.-L., al, X. Ge et: Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17. DOI 10.1109/JAS.2019.1911651 | MR 3841465
[35] Zhang, X.-M., Han, Q.-L., al, X. Ge et: Resilient control design based on a sampled-data model for a class of networked control systems under denial-of-service attacks. IEEE Trans. Cybernet. (2019), 1-11.
[36] Zhang, X.-M., Han, Q.-L., Seuret, A., Gouaisbaut, F.: An improved reciprocally convex inequality and an augmented Lyapunov-Krasovskii functional for stability of linear systems with time-varying delay. Automatica 84 (2017), 221-226. DOI 10.1016/j.automatica.2017.04.048 | MR 3689887
Partner of
EuDML logo