[1] An, L., Yang, G. H.:
Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks. IEEE Trans. Cybernet. 49 (2019), 3, 827-838.
DOI 10.1109/tcyb.2017.2787740
[3] Chen, W., Ding, D., Ge, X., Han, Q. L., Wei, G.:
$H_{\infty}$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018) 1-11.
DOI 10.1109/tcyb.2018.2885567
[4] Chen, B., Zhang, H., Lin, C.:
Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98.
DOI 10.1109/tnnls.2015.2412121 |
MR 3465627
[5] Gahinet, P., Nemirovskii, A., Laub, A. J.:
The LMI control toolbox. In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041.
DOI 10.1109/cdc.1994.411440
[6] Ge, X., Han, Q. L.:
Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819.
DOI 10.1109/tcyb.2016.2570860
[7] Ding, L., Han, Q. L., Ge, X.:
An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123.
DOI 10.1109/tcyb.2017.2771560 |
MR 3554944
[8] Ding, D., Wang, Z., Han, Q. L., Wei, G.:
Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384.
DOI 10.1109/tcyb.2018.2827037
[9] Dolk, V. S., Tesi, P., Persis, C. D.:
Event-triggered control systems under denial-of-service attacks. IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105.
DOI 10.1109/tcns.2016.2613445 |
MR 3632431
[10] Ge, X., Han, Q. L., Wang, Z.:
A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernetics 49 (2019), 1, 171-183.
DOI 10.1109/tcyb.2017.2769722 |
MR 4101428
[11] Ge, X., Han, Q. L., Zhang, X. M.:
Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426.
DOI 10.1109/tie.2017.2752148
[12] Hu, S., Yue, D., Xie, X.:
Resilient event-triggered controller synthesis of networked control systems under periodic dos jamming attacks. IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281.
DOI 10.1109/tcyb.2018.2861834
[13] Ding, D., Han, Q. L., Wang, Z., Ge, X.:
A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499.
DOI 10.1109/tii.2019.2905295
[14] Farraj, A., Hammad, E., Kundur, D.:
A cyber-physical control framework for transient stability in smart grids. IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215.
DOI 10.1109/tsg.2016.2581588
[15] Ge, X., Han, Q. L., Wang, Z.:
A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159.
DOI 10.1109/tcyb.2017.2789296
[16] Kulkarni, A., Purwar, S.:
Adaptive nonlinear gain based composite nonlinear feedback controller with input saturation. IMA J. Math. Control Inform. 3 (2018), 35, 757-771.
DOI 10.1093/imamci/dnw075 |
MR 3858289
[17] Li, Y., Tong, S.:
Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inform. Sci. 29 (2015), 125-142.
DOI 10.1016/j.ins.2014.08.060 |
MR 3267054
[18] Li, Y., Tong, S., Li, T.:
Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybernet. 45 (2014), 1, 138-149.
DOI 10.1109/tcyb.2014.2333738
[19] Liu, X., Sun, X.: Non-fragile recursive sliding mode dynamic surface control with adaptive neural network. Control Theory Appl. 30 (2013), 10, 1323-1328.
[20] Liu, X., Sun, X.: Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automat. Sinica 40 (2014), 10, 2193-2202.
[21] Lu, A. Y., Yang, G. H.:
Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820.
DOI 10.1109/tac.2017.2751999 |
MR 3807663
[22] Lv, C., Liu, Y., Hu, X.:
Simultaneous observation of hybrid states for cyber-physical systems: A case study of electric vehicle powertrain. IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367.
DOI 10.1109/tcyb.2017.2738003
[23] Niu, B., Li, H., Qin, T.:
Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input. IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688.
DOI 10.1109/tsmc.2017.2696710
[24] Otto, J., Vogel-Heuser, B., Niggemann, O.:
Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing. IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282.
DOI 10.1109/tii.2017.2718729
[26] Qin, J., Li, M., Shi, L.:
Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663.
DOI 10.1109/tac.2017.2756259 |
MR 3807654
[27] Shen, Z.: Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer. Control Theory Appl. 35 (2018), 8, 1092-1100.
[28] Shen, Z., Zhang, X.: Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains. Acta Automat. Sinica 44 (2018), 10, 1833-1841.
[29] Shi, X., Lim, C. C., Shi, P.:
Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone. IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213.
DOI 10.1109/tnnls.2018.2793968 |
MR 3867838
[30] Sun, H., Peng, C., Zhang, W.:
Security-based resilient event-triggered control of networked control systems under denial of service attacks. J. Franklin Inst. 356 (2018), 17, 10277-10295.
DOI 10.1016/j.jfranklin.2018.04.001 |
MR 4034978
[31] Sun, Y. C., Yang, G. H.:
Periodic event-triggered resilient control for cyber-physical systems under denial-of-service attacks. J. Franklin Inst. 355 (2018), 13, 5613-5631.
DOI 10.1016/j.jfranklin.2018.06.009 |
MR 3835109
[32] Sun, Y. C., Yang, G. H.:
Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks. Inform. Sci. 465 (2018), 340-352.
DOI 10.1016/j.ins.2018.07.030 |
MR 3846182
[33] Swaroop, D., Hedrick, J. K., Yip, P. P.:
Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899.
DOI 10.1109/tac.2000.880994 |
MR 1795360
[34] Tian, E., Wang, Z., Zou, L., Yue, D.:
Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case. Automatica 107 (2019), 296-305.
DOI 10.1016/j.automatica.2019.05.039 |
MR 3959670
[35] Tian, E., Wang, Z., Zou, L., Yue, D.:
Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498.
DOI 10.1002/rnc.4447 |
MR 3915146
[36] Tong, S., Li, Y., Jing, X.:
Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer. Inform. Sci. 235 (2013), 287-307.
DOI 10.1016/j.ins.2013.02.033 |
MR 3042302
[37] Wang, Y., Gao, Y., Karimi, H. R.:
Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675.
DOI 10.1109/tsmc.2017.2720968
[38] Wang, D., Huang, J.:
Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Networks 16 (2005), 1, 195-202.
DOI 10.1109/tnn.2004.839354
[40] Xu, L., Guo, Q., Yang, T.:
Robust routing optimization for smart grids considering cyber-physical interdependence. IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629.
DOI 10.1109/tsg.2018.2888629
[42] Yang, J., Chen, Y., Cui, L.:
Multiple-mode adaptive state estimator for nonlinear switched systems. Int. Control Automat. Syst. 15 (2017), 4, 1485-1493.
DOI 10.1007/s12555-016-0331-0
[43] Yu, J., Ma, Y., Yu, H.:
Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping. Inform. Sci. 376 (2017), 172-189.
DOI 10.1016/j.ins.2016.10.018
[45] Zhai, D., An, L., Dong, J.:
Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597.
DOI 10.1109/tfuzz.2017.2686378
[46] Zhai, G., Hu, B., Yasuda, K.:
Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. Int. J. Systems Sci. 32 (2001), 8, 1055-1061.
DOI 10.1080/00207720116692 |
MR 1958764
[47] Zhai, D., Xi, C., An, L.:
Prescribed performance switched adaptive dynamic surface control of switched nonlinear systems with average dwell time. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269.
DOI 10.1109/tsmc.2016.2571338
[48] Zhang, H., Cheng, P., Shi, L.:
Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028.
DOI 10.1109/tac.2015.2409905 |
MR 3419593
[51] Zhang, T., Xia, M., Yi, Y.:
Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387.
DOI 10.1109/tsmc.2017.2675540 |
MR 3654606
[52] Zuo, Z., Han, Q. L., Ning, B.:
An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334.
DOI 10.1109/tii.2018.2817248 |
MR 3932129
[53] Zou, A. M., Hou, Z. G., Tan, M.:
Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897.
DOI 10.1109/tfuzz.2008.917301