Previous |  Up |  Next

Article

Keywords:
networked control system; secure control; adaptive control; dynamic surface control
Summary:
We address the secure control issue of networked non-affine nonlinear systems under denial of service (DoS) attacks. As for the situation that the system information cannot be measured in specific period due to the malicious DoS attacks, we design a neural networks (NNs) state observer with switching gain to estimate internal states in real time. Considering the error and dynamic performance of each subsystem, we introduce the recursive sliding mode dynamic surface method and a nonlinear gain function into the secure control strategy. The relationship between the frequency (duration) of DoS attacks and the stability of the system is established by the average dwell time (ADT) method. It is proven that the system can withstand the influence of DoS attacks and track the desired trajectory while preserving the boundedness of all closed-loop signals. Finally, simulation results are provided to verify the effectiveness of the proposed secure control strategy.
References:
[1] An, L., Yang, G. H.: Decentralized adaptive fuzzy secure control for nonlinear uncertain interconnected systems against intermittent dos attacks. IEEE Trans. Cybernet. 49 (2019), 3, 827-838. DOI 10.1109/tcyb.2017.2787740
[2] Boubakir, A., Labiod, S., Boudjema, F.: Linear adaptive control of a class of SISO nonaffine nonlinear systems. Int. J. Systems Sci. 45 (2014), 12, 2490-2498. DOI 10.1080/00207721.2013.772259 | MR 3233170
[3] Chen, W., Ding, D., Ge, X., Han, Q. L., Wei, G.: $H_{\infty}$ containment control of multi-agent systems under event-triggered communication scheduling: The finite-horizon case. IEEE Trans. Cybernet. (2018) 1-11. DOI 10.1109/tcyb.2018.2885567
[4] Chen, B., Zhang, H., Lin, C.: Observer-based adaptive neural network control for nonlinear systems in nonstrict-feedback form. IEEE Trans. Neural Networks Learning Systems 27 (2017), 1, 89-98. DOI 10.1109/tnnls.2015.2412121 | MR 3465627
[5] Gahinet, P., Nemirovskii, A., Laub, A. J.: The LMI control toolbox. In: Proc. 33rd IEEE Conference on Decision and Control, IEEE 3 (1994), pp. 2038-2041. DOI 10.1109/cdc.1994.411440
[6] Ge, X., Han, Q. L.: Consensus of multiagent systems subject to partially accessible and overlapping Markovian network topologies. IEEE Trans. Cybernet. 47 (2017), 8, 1807-1819. DOI 10.1109/tcyb.2016.2570860
[7] Ding, L., Han, Q. L., Ge, X.: An overview of recent advances in event-triggered consensus of multiagent systems. IEEE Trans. Cybernet. 48 (2018), 4, 1110-1123. DOI 10.1109/tcyb.2017.2771560 | MR 3554944
[8] Ding, D., Wang, Z., Han, Q. L., Wei, G.: Neural-network-based output-feedback control under Round-Robin scheduling protocols. IEEE Trans. Cybernet. 49 (2019), 6, 2372-2384. DOI 10.1109/tcyb.2018.2827037
[9] Dolk, V. S., Tesi, P., Persis, C. D.: Event-triggered control systems under denial-of-service attacks. IEEE Trans. Control Network Syst. 4 (2016), 1, 93-105. DOI 10.1109/tcns.2016.2613445 | MR 3632431
[10] Ge, X., Han, Q. L., Wang, Z.: A dynamic event-triggered transmission scheme for distributed set-membership estimation over wireless sensor networks. IEEE Trans. Cybernetics 49 (2019), 1, 171-183. DOI 10.1109/tcyb.2017.2769722 | MR 4101428
[11] Ge, X., Han, Q. L., Zhang, X. M.: Achieving cluster formation of multi-agent systems under aperiodic sampling and communication delays. IEEE Trans. Industr. Electron. 65 (2018), 4, 3417-3426. DOI 10.1109/tie.2017.2752148
[12] Hu, S., Yue, D., Xie, X.: Resilient event-triggered controller synthesis of networked control systems under periodic dos jamming attacks. IEEE Trans. Cybernet. 49 (2018), 12, 4271-4281. DOI 10.1109/tcyb.2018.2861834
[13] Ding, D., Han, Q. L., Wang, Z., Ge, X.: A survey on model-based distributed control and filtering for industrial cyber-physical systems. IEEE Trans. Industr. Inform. 15 (2019), 5, 2483-2499. DOI 10.1109/tii.2019.2905295
[14] Farraj, A., Hammad, E., Kundur, D.: A cyber-physical control framework for transient stability in smart grids. IEEE Trans. Smart Grid 9 (2018), 2, 1205-1215. DOI 10.1109/tsg.2016.2581588
[15] Ge, X., Han, Q. L., Wang, Z.: A threshold-parameter-dependent approach to designing distributed event-triggered $H_{\infty}$ consensus filters over sensor networks. IEEE Trans. Cybernet. 9 (2019), 4, 1148-1159. DOI 10.1109/tcyb.2017.2789296
[16] Kulkarni, A., Purwar, S.: Adaptive nonlinear gain based composite nonlinear feedback controller with input saturation. IMA J. Math. Control Inform. 3 (2018), 35, 757-771. DOI 10.1093/imamci/dnw075 | MR 3858289
[17] Li, Y., Tong, S.: Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays. Inform. Sci. 29 (2015), 125-142. DOI 10.1016/j.ins.2014.08.060 | MR 3267054
[18] Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback dynamic surface control of interconnected nonlinear pure-feedback systems. IEEE Trans. Cybernet. 45 (2014), 1, 138-149. DOI 10.1109/tcyb.2014.2333738
[19] Liu, X., Sun, X.: Non-fragile recursive sliding mode dynamic surface control with adaptive neural network. Control Theory Appl. 30 (2013), 10, 1323-1328.
[20] Liu, X., Sun, X.: Recursive sliding-mode dynamic surface adaptive NN control with nonlinear gains. Acta Automat. Sinica 40 (2014), 10, 2193-2202.
[21] Lu, A. Y., Yang, G. H.: Input-to-state stabilizing control for cyber-physical systems with multiple transmission channels under denial of service. IEEE Trans. Automat. Control 63 (2018), 6, 1813-1820. DOI 10.1109/tac.2017.2751999 | MR 3807663
[22] Lv, C., Liu, Y., Hu, X.: Simultaneous observation of hybrid states for cyber-physical systems: A case study of electric vehicle powertrain. IEEE Trans. Cybernet. 48 (2018), 8, 2357-2367. DOI 10.1109/tcyb.2017.2738003
[23] Niu, B., Li, H., Qin, T.: Adaptive NN dynamic surface controller design for nonlinear pure-feedback switched systems with time-delays and quantized input. IEEE Trans. Systems Man Cybernet.: Systems. 48 (2017), 10, 1676-1688. DOI 10.1109/tsmc.2017.2696710
[24] Otto, J., Vogel-Heuser, B., Niggemann, O.: Automatic parameter estimation for reusable software components of modular and reconfigurable cyber-physical production systems in the domain of discrete manufacturing. IEEE Trans. Industr. Inform. 14 (2018), 1, 275-282. DOI 10.1109/tii.2017.2718729
[25] Persis, C. D., Tesi, P.: Input-to-state stabilizing control under denial-of-service. IEEE Trans. Automat. Control. 60 (2015), 11, 2930-2944. DOI 10.1109/tac.2015.2416924 | MR 3419582
[26] Qin, J., Li, M., Shi, L.: Optimal denial-of-service attack scheduling with energy constraint over packet-dropping networks. IEEE Trans. Automat. Control 63 (2018), 6, 1648-1663. DOI 10.1109/tac.2017.2756259 | MR 3807654
[27] Shen, Z.: Recursive sliding mode dynamic surface output feedback control for ship trajectory tracking based on neural network observer. Control Theory Appl. 35 (2018), 8, 1092-1100.
[28] Shen, Z., Zhang, X.: Recursive sliding-mode dynamic surface adaptive control for ship trajectory tracking with nonlinear gains. Acta Automat. Sinica 44 (2018), 10, 1833-1841.
[29] Shi, X., Lim, C. C., Shi, P.: Adaptive neural dynamic surface control for nonstrict-feedback systems with output dead zone. IEEE Trans. Neural Networks Learning Systems 29 (2018), 11, 5200-5213. DOI 10.1109/tnnls.2018.2793968 | MR 3867838
[30] Sun, H., Peng, C., Zhang, W.: Security-based resilient event-triggered control of networked control systems under denial of service attacks. J. Franklin Inst. 356 (2018), 17, 10277-10295. DOI 10.1016/j.jfranklin.2018.04.001 | MR 4034978
[31] Sun, Y. C., Yang, G. H.: Periodic event-triggered resilient control for cyber-physical systems under denial-of-service attacks. J. Franklin Inst. 355 (2018), 13, 5613-5631. DOI 10.1016/j.jfranklin.2018.06.009 | MR 3835109
[32] Sun, Y. C., Yang, G. H.: Event-triggered resilient control for cyber-physical systems under asynchronous DoS attacks. Inform. Sci. 465 (2018), 340-352. DOI 10.1016/j.ins.2018.07.030 | MR 3846182
[33] Swaroop, D., Hedrick, J. K., Yip, P. P.: Dynamic surface control for a class of nonlinear systems. IEEE Trans. Automat. Control 45 (2000), 10, 1893-1899. DOI 10.1109/tac.2000.880994 | MR 1795360
[34] Tian, E., Wang, Z., Zou, L., Yue, D.: Chance-constrained $H_{\infty}$ control for a class of time-varying systems with stochastic nonlinearities: The finite-horizon case. Automatica 107 (2019), 296-305. DOI 10.1016/j.automatica.2019.05.039 | MR 3959670
[35] Tian, E., Wang, Z., Zou, L., Yue, D.: Probabilistic-constrained filtering for a class of nonlinear systems with improved static event-triggered communication. Internat. J. Robust Nonlinear Control 29 (2019), 5, 1484-1498. DOI 10.1002/rnc.4447 | MR 3915146
[36] Tong, S., Li, Y., Jing, X.: Adaptive fuzzy decentralized dynamics surface control for nonlinear large-scale systems based on high-gain observer. Inform. Sci. 235 (2013), 287-307. DOI 10.1016/j.ins.2013.02.033 | MR 3042302
[37] Wang, Y., Gao, Y., Karimi, H. R.: Sliding mode control of fuzzy singularly perturbed systems with application to electric circuit. IEEE Trans. Systems Mand Cybernet.: Systems 48 (2017), 10, 1667-1675. DOI 10.1109/tsmc.2017.2720968
[38] Wang, D., Huang, J.: Neural network-based adaptive dynamic surface control for a class of uncertain nonlinear systems in strict-feedback form. IEEE Trans. Neural Networks 16 (2005), 1, 195-202. DOI 10.1109/tnn.2004.839354
[39] Wu, L., Gao, Y., Liu, J.: Event-triggered sliding mode control of stochastic systems via output feedback. Automatica 82 (2017), 79-92. DOI 10.1016/j.automatica.2017.04.032 | MR 3658743
[40] Xu, L., Guo, Q., Yang, T.: Robust routing optimization for smart grids considering cyber-physical interdependence. IEEE Trans. Smart Grid 10 (2018), 5, 5620-5629. DOI 10.1109/tsg.2018.2888629
[41] Ye, X.: Global adaptive control of nonlinearly parametrized systems. IEEE Trans. Automat. Control 48 (2003), 1, 169-173. DOI 10.1109/tac.2002.804464 | MR 1950330
[42] Yang, J., Chen, Y., Cui, L.: Multiple-mode adaptive state estimator for nonlinear switched systems. Int. Control Automat. Syst. 15 (2017), 4, 1485-1493. DOI 10.1007/s12555-016-0331-0
[43] Yu, J., Ma, Y., Yu, H.: Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping. Inform. Sci. 376 (2017), 172-189. DOI 10.1016/j.ins.2016.10.018
[44] Yu, Q., Wu, B.: Robust stability analysis of uncertain switched linear systems with unstable subsystems. Int. J. Systems Sci. 46 (2015), 7, 1278-1287. DOI 10.1080/00207721.2013.816089 | MR 3298169
[45] Zhai, D., An, L., Dong, J.: Switched adaptive fuzzy tracking control for a class of switched nonlinear systems under arbitrary switching. IEEE Trans. Fuzzy Syst. 26 (2018), 2, 585-597. DOI 10.1109/tfuzz.2017.2686378
[46] Zhai, G., Hu, B., Yasuda, K.: Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach. Int. J. Systems Sci. 32 (2001), 8, 1055-1061. DOI 10.1080/00207720116692 | MR 1958764
[47] Zhai, D., Xi, C., An, L.: Prescribed performance switched adaptive dynamic surface control of switched nonlinear systems with average dwell time. IEEE Trans. Systems Man Cybernet.: Systems 47 (2017), 7, 1257-1269. DOI 10.1109/tsmc.2016.2571338
[48] Zhang, H., Cheng, P., Shi, L.: Optimal denial-of-service attack scheduling with energy constraint. IEEE Trans. Automat. Control 60 (2015), 11, 3023-3028. DOI 10.1109/tac.2015.2409905 | MR 3419593
[49] Zhang, T. P., Ge, S. S.: Adaptive dynamic surface control of nonlinear systems with unknown dead zone in pure feedback form. Automatica 44 (2008), 7, 1895-1903. DOI 10.1016/j.automatica.2007.11.025 | MR 2528143
[50] Zhang, X. M., Han, Q. L., Ge, X.: Networked control systems: A survey of trends and techniques. IEEE/CAA J. Automat. Sinica (2019), 1-17. DOI 10.1109/jas.2019.1911651 | MR 3841465
[51] Zhang, T., Xia, M., Yi, Y.: Adaptive neural dynamic surface control of pure-feedback nonlinear systems with full state constraints and dynamic uncertainties. IEEE Trans. Systems Man Cybernet.: Systems. 47 (2017), 8, 2378-2387. DOI 10.1109/tsmc.2017.2675540 | MR 3654606
[52] Zuo, Z., Han, Q. L., Ning, B.: An overview of recent advances in fixed-time cooperative control of multi-agent systems. IEEE Trans. Industr. Informat. 14 (2018), 6, 2322-2334. DOI 10.1109/tii.2018.2817248 | MR 3932129
[53] Zou, A. M., Hou, Z. G., Tan, M.: Adaptive control of a class of nonlinear pure-feedback systems using fuzzy backstepping approach. IEEE Trans. Fuzzy Syst. 16 (2008), 4, 886-897. DOI 10.1109/tfuzz.2008.917301
Partner of
EuDML logo